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The universe within which human behavior occurs is a variable one, 

with one important source of that variation being uncertainty or "error" in 

the data, that is, information received about some environmental source 

that does not reflect the true characteristics of that source. Therefore, 

situations in which the human perceiver must exercise judgment about the 

"true" value of a stimulus (whatever it's "apparent" value) are common. 

Much of the error variation in the proximal representation of the 

environment available for processing can be conceived of as roughly 

Gaussian in character; the "true" value is obscured by a roughly normally 

distributed "error" component. In general, people are quite good at dealing 

with such variability. Brunswik (1956), for example, showed that in 

making perceptual judgments of size, people could successfully average 

out distance variations to attain "approximate size constancy." A similar 

conception underlies much of the research on probabilistic reasoning using 

numerical cues; here also "approximate cue constancy" can be attained if 

the errors are normally distributed around the true cue value. But what 

happens if the error is not Gaussian? 

In a technology-driven ecology, much of the stimulation serving as 

the basis for judgments about distal objects or events is provided by 

fallible devices -- artifacts ~ rather than by natural processes. In such 

situations true cues can be obscured by wildly non-Gaussian error 

components, as well as the more familiar Gaussian components. A 

calculator, for example, may give answers that are close approximations 

to true values most of the time, but give wildly wrong answers if the 

batteries are weak. How do individuals respond in such ecologies? 

To examine this question, we have conducted a series of studies in 



which error type is systematically manipulated. Before describing the 

research which has been accomplished under this contract, however, a 

brief discussion of how previous investigators have examined the effects 

of unreliability, or uncertainty in the data, is warranted. 

The ability of people to deal with uncertainty has been of interest 

to experimental psychologists since choice reaction time was first 

systematically investigated. Formalizations of the concept of uncertainty 

in the 1950's in, for example, information theory, the theory of signal 

detectability and psychological decision theory, have made uncertainty one 

of the central concerns of cognitive psychologists. 

While much research has been done on people's responses to 

environmental uncertainty, the great bulk of that research (outside the 

sensory domain) has dealt with uncertainty which has been pre-encoded by 

the experimenter. Hence, the subjects did not have to infer from 

observations of the data either the presence or degree of uncertainty. 

For example, in the many "bookbag-and-poker-chip" studies (Edwards, 

1968) there was no uncertainty concerning what event had occurred; the 

subjects knew exactly what the sample proportion, say of red vs. white 

marbles, was. The uncertainty lay not in what the datum was but rather in 

the fact that the perfectly reliably observed datum provided probabilistic 

support for the hypotheses. The cascaded inference variant of the 

bookbag-and-poker-chip (Schum, 1977) work introduced such data 

uncertainty, but there too the uncertainty was pre-encoded by the 

experimenter and presented directly to the subject as observations which, 

while imperfectly diagnostic of some distal state, were themselves 

perfectly reliable. 



Most of the research on the effects of "source reliability" encoded 

the uncertainty for subjects either by instructions, by semantic labels, or 

by presenting what subjects were expected to consider untrustworthy data 

(cf. York, Doherty and Kamouri, 1987, for a brief review).  Most recently, in 

the "heuristics and biases" research, the environmental uncertainties have 

typically been pre-encoded as percentages, or described in verbal form (cf. 

Kahneman, Slovic & Tversky, 1982). In general, in the research alluded to 

above, perhaps most clearly in the work on source reliability, there is no 

way of knowing whether subjects are influenced by reliability or validity, 

in the technical psychometric senses of those terms. 

In the present paper we will use reliability to refer to the degree to 

which a variable is stable over time, the degree to which a variable 

correlates with itself on repeated observations, or as the ratio of true 

score variance to total variance, where total variance is composed of true 

score and random error variance. Validity, of course, refers to the 

proportion of variance in common between a predictor and some criterion 

variable. 

Relatively little is known about the effects of the form of 

uncertainty in which the data presented to subjects are, on a trial by trial 

basis, fallible, and such fallibility is either obvious to, or discoverable by, 

the subjects. Note again that by fallible we do not mean simply that the 

data are imperfect predictors of some other variable. We refer rather to 

the technical psychometric conception of unreliability in which a value of 

a variable is an imperfect indicator of the true state of that variable. We 

will use the term "data error"in lieu of unreliability, since we extend the 

definition somewhat beyond that typical in classical measurement theory. 



THE NATURE OF DATA ERROR 

In the classical psychometric conception of error, an observation, 

X0, is composed of a true score component, Xt, and an error component, e. 

X0 = \ + e (a) 

The term e is usually considered to be a random variable sampled from 

a Gaussian distribution with mean zero. Its standard deviation, relative to 

that of Xt, determines the reliability of X0, and influences the predictive 

and construct validity of the measure. This conception has proven to be a 

powerful approach to psychological measurement, and it is highly 

appropriate to a wide variety of measurement problems. 

But classical error theory has been applied primarily to responses. 

The present research is concerned with the error in the data presented to 

subjects, the data on which subjects predicate their responses. There are 

forms of data error that are not typically differentiated by the classical 

psychometric conception, although they may have qualitatively different 

impacts on psychological processes. In particular, in many situations, 

data error may have an all-or-none quality; apparatus malfunction may 

produce wildly divergent meter readings on some apparently random 

proportion of trials, a physician may receive the results of a blood test on 

the wrong person, or a decimal error may be made. The distinction is more 

than that between categorical and continuous data, although errors 

associated with categorical data necessarily possess an all-or-none 



quality. The distinction concerns rather the sort of error in which the 

datum at hand is simply unrelated to the causal or predictive process 

being studied. We will term error having this "all-or-none" quality 

"system failure" error (SF). The traditionally conceived Gaussian error we 

will call "measurement error" fMn 

As a framework for analysis, Figure 1 describes schematically a 

sequence of events typical of many studies of cognitive processes, and 

representative of at least some sequences of events in the world. The 

input data, X0j, on which cognitive operations are performed, may not be 

perfectly valid or reliable. Hence, using the notation of (a) above, 

X0i 
= xti + e <D 

where i indexes the possible data inputs on any given event or trial. 

Example of ME applicable to organizations would include estimates on job 

applications of the durations of previous job tenures, rounded GPAs and 

ratings by the interviewer. 

Analogously, the feedback provided to subjects may also be less 

than perfectly valid or reliable, 

F0j - Ftj ♦ e (2) 

where Ft is some true value. An employment interviewer may rarely 

get feedback about the performance of applicants he or she hired, but if 

such feedback were forthcoming, being told that such an employee was in 
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Figure 1.   A typical trial in an experiment 

dealing with cognitive processes. 
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the top 10% when that salesman was actually in the top 15% would be in 

this category. 

Of course, the determination of whether an error is a case of ME or SF 

is not possible given a single observation. Distributional information is 

essential to determine the nature of the error, in which the pattern of 

residuals from a correlational analyses in either reliability or validity 

analyses would be markedly different for data with SF than for data with 

ME errors. 

In the case of SF, in the equation for data input error we introduce a 

different symbol for error, since it is a conceptually different sort of 

error. Let the observation that is unrelated to the true value of the 

variable putatively being measured be denoted E. Hence the equation for 

data input error with SF is 

X0J=E,   X0J = Xt,   i-j (3) 

where values of E are selected randomly from the set of possible Xt, and 

substituted for the Xt that would have been presented on a specified trial. 

The feedback, F0, is based on the weighted X0 called for in the 

experimental design on that tnal   This equation shows, of course, that 

system failure is simply the limiting case of measurement error. 

Similarly, the feedback error equation is, in the case of system 

failure, 

F01=E>    F0j=Ff   jxJ <«> 



where E is a random variable selected from the distribution of possible F* 

without regard to the set of X0 on that observation. Recalling the 

omnWmont intorviower example, such a feedback error would occur if an 

interviewer had hired someone he or she thought would fail, then found out 

that the person had risen rapidly in the organization, never knowing that it 

was the nephew of the chairman of the board. A medical example would be 

a blood test on the wrong person when the physician is using the data to 

confirm an already made diagnosis. The possible psychological interest of 

all of the above enters, of course, when the person who is doing the 

diagnosis, employment interviewing, or whatever, becomes cognizant that 

the data being used are, in fact, subject to one or more of the error types 

described. The statistical relation between the proportion of 5F errors 

and the population correlation coefficient is given in Doherty & Sullivan 

(In press, see Appendix 1). 

Equations (3) and (4) may produce formally equivalent sets of 

relations between Xoj and F0 under some circumstances. However, 

appropriate experimental manipulations may lead some subjects to regard 

the error as in the predictors, while others regard the error as in the 

feedback. Statistically equivalent amounts of error may have radically 

different psychological effects. Figure 2 summarizes the four error types. 

A recent dissertation on the psychology of scientific inference 

(Kern, 1982) manipulated error type, and partly prompted the analysis 

shown in Fig. 2. Kern had advanced graduate students in the sciences make 

inferences based on data that were characterized by no error, ME error, SF 

error, or both forms of error. Her primary dependent variable was the 
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Figure 2. The four classes of error 

situations considered in this report, 
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tendency of subjects to change their hypotheses, given feedback. Subjects 

given measurement error changed hypotheses as readily as subjects with 

error-free data, while those subjects with system failure error displayed 

considerable hypothesis perseveration. In Kern's simulation of scientific 

hypothesis testing, the measurement error was essentially in the data on 

which the inferences were based, while the system failure error was in 

the feedback, i.e., she compared cells 1 and 4 in Fig. 2. The magnitude of 

effect in her work was truly impressive, suggesting the psychological 

importance of the distinctions among error categories, although not 

identifying which aspect(s) of the category system may be crucial Data 

error has been manipulated by other investigators in various paradigms. 

Castellan (1977) describes a set of concept formation studies with 

"misinformative feedback". Any study with categorical input and/or 

feedback which gives subjects less than perfectly deterministic 

environments would qualify as representing SF error, given our definition. 

The remaining investigations to be reported in Part 1 of the present 

paper have all been performed in the conceptual and analytic framework of 

the "lens model", which will be briefly presented. 

THE LENS MODEL 

The lens model has its roots in Probability Functional ism, the system 

which represented Egon Brunswik's attempt to reshape both the theory and 

methodology of psychology (Hammond, 1966). Probabilistic Functionalism 

was cast primarily by Brunswik as a theory of perception (Postman and 

Tolman, 1959), but was subsequently broadened to the much wider domain 

of "human judgment" (Hammond, McClelland and Mumpower, 1980; Ullman 

andDoherty, 1984). 
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Brunswik argued that as far as the behaving organism could discover, 

the world presented a probabilistic, "semierratic* environment in which 

causes scattered their effects, an environment in which causes can be 

inferred only with some irreducible uncertainty from their effects. This 

conception is captured elegantly in a graphic representation, the lens 

model, shown in Figure 3. Suppose an investigator wishes to model some 

person's understanding of an environment. The essence of the method 

implied by the lens model, as extended especially by Hammond and his 

associates (we use essentially the notation of Hammond & Summers, 

1972), is to have that person make a large number of quantitative or 

quantifiable judgments of multiattribute objects (scenarios, people, etc.), 

the attributes themselves being quantitative or quantifiable. The number 

of such objects which are judged must be sufficient to permit multiple 

regression analysis ("policy capturing") of each subject's data. It is this 

intensive statistical analysis of each subject's data that lends the 

seemingly paradoxical name "idiographic/statistical" to the approach. 

Consider Figure 3. First note that the number of objects, or cases, to be 

judged by the individual is not represented. The attributes, hereafter to be 

referred to as cues, of each object are denoted by the X0j. In the studies 

to be described in Part 1, there are two cues, but there is no reason to 

limit the number of cues to two: indeed as many as 64 have been used 

(Roose & Doherty. 1976).  For illustration, assume that a subject is judging 

50 objects, each characterized by two cues. A possible task might be the 

selection of recruits for technical school based on two summary scores 

from a test battery. Such a task might be a pure "policy capturing" task, as 

when we assume that the person doing the evaluations already has some 
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judgment policy which we are trying to discover and describe. In that case 

there would be no feedback to the subject, and no environmental side to 

the lens model. Or the task might be a learning task, in which the 

investigator is trying to discover how the subject comes to terms with 

the uncertainty inherent in a new prediction situation. Then both sides, or 

"systems" of the lens model, the environmental and the subject sides, 

would be needed to represent the situation. The Multiple Cue Probability 

Learning (MCPL) paradigm (Brehmer, 1980) exemplifies this latter 

application of the lens model. In the MCPL paradigm, the subject's task is 

to learn to predict a criterion variable from two or more cues. Generally a 

hypothetical situation is created. The cues are presented, the subject 

predicts a criterion value and outcome feedback is presented. This 

procedure, which follows that outlined in Figure 1, may be followed for 

100 or more trials, with the cues being only probabilistically related to 

the criterion, and the criterion typically not being perfectly predictable 

even with optimal weighting and combining of the cues. People do not do 

well in such a task, without help. 

The lens model depicts the simultaneous relationships of the cues with 

both the "ecological", or criterion, variable and with the judgment 

variable. For example the cue xol possesses a relationship to the 

criterion, Ye, described by the correlation coefficient, rej, which 

correlation is called the ecological validity of that cue. Similarly Xo1 

possesses a relationship to the judgment, Ys, described by the correlation 

coefficient, rsl, called the utilization coefficient. Optimally the values 

of the utilization coefficients would match the values of their respective 
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ecological validities. In the world, this simply does not occur, and it is in 

the attempt to understand the probabilistic behavior of people in a 

probabilistic world that the lens model and the associated" lens model 

equation" are useful tools. Consider the variation of the lens model 

equation developed by Tucker (1964) from the work of Hammond, Hursch & 

Todd (1964) and Hursch, Hammond & Hursch (1964): 

ra= ReRsG + C[(l-Re
2)(1-Rs

2))1/2 

The most straightforward way to understand the components of the lens 

model equation are as bivariate correlations: 

ra        the correlation between the subject's judgments (Ys) and the 

actual values of the criterion (Ye): the "achievement" index. 

Re        the correlation between the actual values of the criterion (Ye) and 

the values predicted by the multiple regression analysis (Y'e): 

alternatively the multiple R between the cues and the criterion 
variable. This reflects how predictable the environment is, given 
the assumption of a linear, additive model. 

Rs        the correlation between the actual values of the judgments (Ys) 

and the values predicted by the multiple regression analysis (Y's), 

alternatively the multiple R between the cues and the judgment 
variable. This reflects how predictable, or "consistent" the subject 
is, given the assumption of a linear, additive model. 

G the correlation between the values of the criterion variable 
predicted by the multiple regression analysis on the 
environmental side (Y'e) and the values of the judgment variable 

predicted by the regression analysis on the subject side (Y's). This 

reflects the knowledge the subject has about the linear, additive 
properties of the environment. 



C the correlation between the residuals on the environmental side of 
the lens (Ye-Y'e) and the residuals on the subject side of the lens 

(Yg-Y'g). This reflects, among other things, the subject's 

knowledge of the nonlinearities and nonadditivities in the 
environment. 

The lens model equation is a rigorous mathematical expression of an 

elementary truism: the ability of a person to predict the world depends on 

how predictable the world is, how consistently the person processes 

information about the world, and how well the person understands the 

world. If any one of these components is lacking, prediction is impossible: 

predictability in the equation is fundamentally a product of three 

decimals, and if any one is zero the product is zero (empirically, the 

additive component is typically vanishlngly small). 

Note that in Figure 3 the notation representing the criterion variable is 

Ye. This corresponds to Ft in Figure 1, the different notation for the same 

value serving to highlight that in a given experiment the Ye is not only the 

value of the criterion variable but is also being used in the experimental 

setting as the basis of the feedback. 

The present research uses extensions of the MCPL paradigm, not to 

study learning ßersjL.but as a relatively well-understood vehicle to study 

possible effects of data error. It is clear from existing research that 

subjects in a typical MCPL study can learn simple cue-criterion relations 

from repeated pairings of multiple cues with the criterion given as 

feedback. II is also clear thai such learning is inefficient compared wim 

more cognitively oriented feedback, especially in more complex 

environments (Hammond, 1986; Hammond, McClelland &Mumpower, 1980). 
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PART 1 

RESEARCH ON DATA ERROR IN THE LENS MODEL PARADIGM 

CONTENTS 
A. Prior Research 

Brehmer, 1970 
Markowitz, 1983 

B. Research Conducted Under This Contract 
Experiment 1. ME error in the input. 

"Jittery meters" did not affect performance, but did 
affect self report 

Experiment 2. ME error in the input. 
Two methods of making ME error highly salient. Ss were 
USAF fighter pilots. No difference from controls. 

Experiment 3. ME error in the input. 
Replicated one condition of Exp. 2 using computers, also 
manipulated task predictability. No effect of ME error. 

Experiment 4 ME in the feedback. 
Gave feedback as a range (point prediction ± aesty) vs. 

point prediction. No effect. 

Experiment 5. ME vs. SF error, locus of error unspecified. 
In task in which the combination rule was obvious 
(averaging equally weighted cues) Ss in SF condition 

0   quickly learned to ignore errors. 

Experiment 6. ME vs. SF error in the input. 
Ss in SF error condition had significantly poorer 
performance than those with ME error. 
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A. PRIOR RESEARCH 

Brehmer, 1970 

Brehmer( 1970) manipulated reliability in a series of studies by 

having subjects infer their own values of the predictor variables. 

Subjects attempted to predict the meeting place of two automobiles from 

their perceptions of the velocities of the two vehicles, one in which they 

rode and the other which came from the opposite direction. While the task 

was perfectly predictable given the actual velocities, this self-generated 

unreliability was such as to reduce the task predictability to less than a 

multiple correlation of 1.0. The essential conclusion of this research was 

that people treat self-generated uncertainty about the cue values much as 

they treat the uncertainty inherent in less than perfectly predictable 

relationships between cues and criteria in standard MCPL studies. One of 

the major sources of evidence for this generalization was the tendency of 

subjects to match Rs to Re. Note that the use of self-generated 

unreliability still confounds reliability and validity. 

Markowitz, 1983 

Since this investigation, which is relevant to the purposes of the 

contract, is unpublished , we will present it in some detail. Markowitz' 

(1983) study was a variation of Brehmer"s(1971) investigation of 

self-generated unreliability  Subjects used objective measurements 

and/or perceptual estimates of the heights of two "sisters" to predict the 



height of a third, unseen sister. Since people might not spontaneously 

distinguish between reliable measurements made with a scale and 

relatively unreliable perceptual estimates, one of the independent 

variables was an instructional manipulation of the salience of the 

reliability differentials. A second variable was whether the perceptual 

estimates were or were not recorded, and a third was the number of 

unreliable predictors, one or two. 

Color slides of 80 females were taken from a uniform distance of about 

3.5 m., against a plain background. The only cue to height was a sidechair 

of standard height, which was placed in front of each female such that one 

of her legs was visible. Forty-eight slides were selected from the 80 and 

divided into two halves so that the persons in each pair appeared to be 

sisters, and the heights in each group were uncorrelated, normally 

distributed, and had equal means and variances.   The actual value of the r 

between the true heights was -.02, and the standard deviations of the true 

heights were 2.34 and 2.56 inches for the first and second sisters, 

respectively. 

Subjects participated in small groups in one of nine conditions. They 

were instructed that they would see 44 pairs of slides, each slide with a 

photograph of one sister, and that their task would be to estimate the 

height of a third sister from the heights of the first two. The nine 

conditions were produced by a 2 X 2 X 2 factorial combination of three 

independent variables plus a Control (cf. Himmelfarb, 1975). The Control 

group was given the heights of both sisters, as "obtained by the 

experimenter, using a scale". Half the remaining 80 subjects had the 

heights of the second sisters already on the response sheet: the other half 
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had to estimate both heights (one reliable cue vs. two unreliable cues-RU 

vs. UU, with R and U denoting reliable and unreliable.). Half the subjects 

were instructed that they "should have less confidence in heights that you 

estimate than in heights that have been measured on a scale": the other 

half had no instructions highlighting the unreliability of their estimates 

(instructions vs. not instructed-l vs. Nl). Half the subjects wrote down 

their estimates: half did not (written vs. not written estimates-W vs. NW). 

Subjects saw four practice pairs, 20 actual pairs, took a one min break, 

then saw the 20 actual pairs in a different random order. For each pair 

they predicted the height of the third sister, and made the estimate(s) 

called for by the condition to which they had been assigned. The.heights . 

were written by subjects on a line or lines provided on that same sheet 

with the measured heights appropriate to their experimental condition. 

Normatively, estimated heights should be less variable than actual 

heights (i.e., the estimates should be regressed to the mean) as should 

predictions of the third sister's height. The predictions should be 

regressed least given two reliable heights, and most given two estimated 

heights. Further, the weights ascribed to the reliable heights ought to be 

greater than those to the unreliable heights. Also, the multiple R relating 

the predicted height to the cues should not vary with the reliability of the 

cues, given purely normative considerations. 

The data of this study are summarized briefly in Table 1-1. 



Table 1-1 

Means from the regression analyses in Markowitz' dissertation.1 

Statistical indices of performance 

, ,2 r 1 ns i  ng 

CONTROL n/a n/a n/a n/a n/a .40 .85 

RU.NI.W 2.00 n/a 52 .22 .94 .78 .89 

RU.NI.NW n/a n/a n/a n/a n/a .86 .91 

RU,I,W 1.87 n/a .48 .22 .91 .69 .88 

RU.I.NW n/a n/a n/a n/a n/a .85 .93 

UU,NI,W 2.25 2.49 .60 .38 .94 .16 .72 

UU,NI,NW n/a n/a n/a n/a n/a .20 .69 

UU.I.W 2.21 2.26 53 .27 .89 .21 .60 

UU.I.NW n/a n/a n/a n/a n/a .19 .69 

]The abbreviations for the conditions are defined in the text. The primes 
on the statistical indices indicate that the analyses were performed on 
predictors with either one or two subjective estimates of height, 
depending on the condition SD refers to the standard deviation of the 
estimates, r'12 to the correlation between predictors, and PC2-PC1 to the 

difference between partial correlations between predictors and 
predictions. The last two columns provide the mean difference between 
partial correlations and the multiple R given the true heights as 
predictors. The symbol n/a indicates that a value would be inappropriate 
in that cell in the table. For example, there is no value for SD' 1 since the 
SD of the first sister's height was fixed by the experimenter, and is not a 
performance index. 
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Detailed statistical analyses can be found in Markowitz (1983). The 

overriding implication of the above results and of the written reports 

made by the subjects is that while the unreliability of the input data upon 

which predictions are based does influence aspects of prediction behavior, 

those influences are not systematically in line with what one would 

expect from normative theory. Subjects are not appropriately sensitive to 

error in input data, not even remotely so. Although a degree of 

regressiveness was noted, as would be partly expected from other 

research demonstrating insufficient regressiveness (Kahneman, Slovic & 

Tversky, 1983), the regressiveness of estimates and predictions was 

neither systematically present nor necessarily appropriate when present. 

There is a tangential issue of some practical interest: writing down 

the estimates led to less normative behavior. It seems that once the 

estimate was written down it was used no differently than a value 

obtained from a more reliable source. The implication of this finding 

appears to run counter to much conventional wisdom, which exhorts 

raters, decision makers, etc. to record their observations lest forgetting 

should cause a loss of the information. But if observations which are error 

prone (i.e., all observations) take on the aura of a precise number when 

recorded, then the failure to account for unreliability may have 

consequences worse than the loss of the observation due to forgetting 

would have had, should the recorded observation later be aggregated with 

some more reliable data. Perhaps a fruitful avenue of research to pursue 

would be the effects of various methods of having the observer record 

some estimate of the quality of the datum at the same time as the datum 

itself is recorded. 
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The present study did not replicate in detail the finding of Brehmer 

(1970) that the consistency of predictions was reduced in response to 

self-generated unreliability in the predictors. The experiments differed in 

so many particulars that there are no reasonable grounds for speculating 

about this difference. Nor do we have any grounds for speculating about 

the utter lack of effect of the instructions to attend to the unreliability of 

the estimates in either the statistical analyses or the subjective reports. 

There are two features of the study which detract from otherwise 

quite comprehensible results. One is the construction of the data set in 

such a fashion that the correlation between the true heights of the 

"sisters" was almost exactly zero. This was done for pragmatic reasons, 

i.e., the difficulty of getting a sufficient number of true sisters, and the 

desire to maximize the interpretability of dissertation results. This 

procedure runs counter, of course, to Brunswik's (1956) call for the 

representative design of experiments. The other difficulty, which this 

task shares with Brehmer's (1970) work, is that the "sisters" task does 

not neatly separate the reliability from the validity of the input data. 

The remainder of this part reports a series of studies, each bearing on 

some aspect of data error, each using some variant of the MCPL approach. 

The particulars of the studies differ a great deal, partly because different 

investigators had different conceptions of how error might best be 

manipulated, but largely because of a conviction that a variety of tasks 

should be used in order to make it possible to generalize across tasks. 
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B. RESEARCH CONDUCTED UNDER THIS CONTRACT 

EXPERIMENT 1 

York, Doherty & Kamouri (1987) assessed the impact of ME in the input. 

Error was manipulated by having two computer-simulated "meters" provide 

multiple observations of two underlying variables. The meters varied in 

the degree to which they "jittered". The presence of such measurement 

error did not have interesting effects on subjects' cue utilization, 

consistency or achievement. York et al. concluded that the subjects were 

essentially averaging over the measurement error, and hence were 

engaging in an appropriate strategy to deal with the complications 

introduced by the random variation of the observed scores. The highly 

salient presence of measurement error did, however, influence subjects' 

self-reports about the degree to which they attended to the cues. This 

study has been published, and a reprint is provided in the appendix. 

EXPERIMENT 2 

This experiment was also designed to investigate the impact on 

predictions of making it transparent to subjects that input data are not 

reliable. A standard MCPL condition, with an uncertain environment but 

with the source of that uncertainty unspecified, served as a baseline 

condition. There were two experimental conditions, one with the true 

values of the cues provided after the subjects had made their predictions, 

the other with multiple observations of the cues used for prediction. If the 

subjects are not influenced by ME in the input, then the former 

experimental condition should be no better or worse than controls, and 
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the latter, multiple observation condition, should be much better. 

Conversely, if the error leads people to distrust data, then the 

performance of the experimental subjects may be worse than that of the 

controls. 

METHOD 

Subjects. A total of 46 jet fighter pilots rated to fly F-15 and F-16 

aircraft, stationed at a USAF base in the continental United States, 

participated as volunteers in this experiment. They received no tangible 

compensation of any sort. Most of the participants were captains, with a 

few lieutenants and majors. 

Apparatus. All stimulus materials, including instructions and pages 

for 104MCPL trials, two pages per trial, were in 3 inch loose leaf binders. 

The forms for the trials were Xeroxed on 8 1/2 in, 67 lb white Vellum 

Bristol-Cover stock, and the data specific to a trial were entered by hand 

with a ball point pen. These materials are described below, and shown in 

Appendix 1. There were two experimental manipulations and a standard 

MCPL treatment. The latter, which will be referred to as the CONTROL 

treatment, will be described first. 

CONTROL. The instructions informed the pilots that the experiment was 

a study in "how people use data", that they were to play the role of an 

executive trainee whose task was to predict the weekly amount of energy 

consumed by an organization Each prediction was to be based on two 

forecasts, a forecast of temperature and a forecast of the number of units 

produced. They were also told that temperature and units produced were 

unrelated, and told in simple terms that both were related positively to 

energy consumption. 
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In the binder, each trial was represented by two consecutive pages. At 

the top of the first page for each trial was the label" Data for Forecast 

Week No " Below that was a figure which filled roughly the middle half 

of the page. The figure had a horizontal baseline approximately 18 cm 

across the bottom, and two vertical columns, 9.5 cm high and 1 cm wide, 

the left sides of which were approximately 1 and 4 cm from the left edge 

of the baseline, leaving 2 cm between columns. Across the width of the 

column was a horizontal line, the height of which represented the cue 

value. One bar was labeled "Temp.", the other "Prod", for temperature and 

units produced, respectively. At the bottom of the page in large type were 

the lines 

Temperature Forecast   'F 

Production Forecast       units 

Entered on these blank lines were the values of the temperature and 

production forecasts. These values were perfectly redundant with the 

heights of the horizontal lines drawn in the columns. Subjects inspected 

the values, made their predictions on a response sheet, then turned the 

page and read the "End of Week Report   Week No. _" This page was 

identical to the first except that there was added a third column, labeled 

"Energy" and a third line at the bottom of the page, "Actual Energy 

Consumption units." As with the cues, a line in the Energy 

column and a redundant number in the bottom line represented the 

criterion value, i.e., F0 in the notation developed in the introduction. Even 

though heavy card stock had been used, the information on page 2 would 

have been detectable when looking at page 1, i.e., through the input page. 

Therefore, before subjects were run, the backs of all copies of page 1 had 
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large black rectangles in appropriate places, rendering those areas opaque. 

This procedure was followed for 79 trials, the first four of which were 

practice trials which were dropped from the analysis. The last 25 trials 

were preceded by a page in the binder which read: "The next set of 25 

trials is a test set to measure what you have already learned. There are no 

more end of week reports". Such a test block without outcome feedback is 

typical of many MCPL studies. It is an effort to obtain performance indices 

uncontaminated by policy shifts made as a consequence of feedback. The 

entire sequence of trials took about an hour to complete, after which a 

brief post-experimental questionnaire was administered. 

While the order of cues on the pages was constant, the cue validities 

were randomly assigned. Thus, "Temp" was always on the left, but for any 

given subject temperature might have had either the higher or the lower 

correlation with the criterion. 

The statistical structure of the task was controlled by creating arrays 

of random numbers in a computer, factor analyzing the random arrays, then 

performing the appropriate transformations on the resulting zero- 

correlated factor scores to achieve the desired formal task 

characteristics. After rounding to two digits, the two cues correlated 

.002. The ecological validity (i.e., the correlation between the cue and the 

criterion) of Xoj was .54 and of Xo2 was .58, with the subscripts 1 and 2 

not denoting order but simply serving as identifiers for the sake of 

presentation in this report. Task predictability (Re) was .63, both over the 

entire set of 104 trials and the set of 79 that included Ye. The statistical 

structure of the task is summarized in Table 1 -2. Pages 29-36 provide 
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the complete instructions, a sample "week", the data sheet and the brief 

post-experimental questionnaire for this condition. 

TABLE 1-2 

The statistical structure of the task environment in Experiment 2.* 

xt1 xt2       Xola       xo1b       xo2a       xo2b Ye 

Xtl       100 00 95 95 00 00 57 

Xt2 100 00 00 71 71 82 

Xola 100 90 00 00 54 

X0,b 100 00 00 55 

Xo2a 100 50 58 

Xo2b 100 58 

Ye 100 

decimals omitted. X denotes the cues and Ye the criterion, the subscripts 

t and o denote true and observed, the subscripts 1 and 2 represent the 
particular combination of validity and reliability, and the subscripts a and 
b the separate observations of a cue in the multiple observation treatment. 
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INSTRUCTIONS 

In this research we are interested in how people use data. To investigate 

data usage, we are asking a large number of people to participate in a variety 

of business simulations. The data for your business simulation is in the 

large binder. The specific instructions are on the following pages. 

Figure 1-1. Pages 29 -36 provide sample pages from the CONTROL 
condition of experiment 1. 



SIMULATION 

Prediction of Weekly Energy Consumption 

Superior Industries, Inc. 

30 



You have just begun work as an executive trainee for a manufacturing  31 

corporation. One of your jobs is to report to the financial planning 

executive concerned with short-range financial issues. 

One of the major costs in running a company is energy consumption and each 

week you will be required to predict how much energy the company will consume. 

To get you acquainted with making these predictions you are given weekly 

records for the past two years and asked to make projections of energy 

consumption for each of those 104 weeks. 

You will be given information concerning the two factors that determine 

energy consumption. On the basis of these two factors you will make a 

prediction of the weekly energy consumption. 

The two factors that determine energy consumption are: 

(1) Temperature, and 

(2) Number of units manufactured. 

However, nobody knows exactly what the weather will be or exactly how many 

units will be produced in the coming week. This means you will have to make 

your predictions based on: 

(1) Weather forecasts, and 

(2) Forecasts of units to be manufactured. 

The weather forecast for each week will range from about 20 degrees to about 

75 degrees. The forecast of units to be manufactured for each week, based on 

sales projections, shipment schedules, and available labor, will vary from 

about 20 to 75. 

The data for the two weekly forecasts, weather and units to be manufac- 

tured, will be on a single page in the binder. For your convenience they will 

be given as numbers and as bar graphs. You are to predict energy consumption 

based on these two forecasts. The range of energy consumption is from about 

350 to 850 units. 



After making your prediction of energy consumption on the data sheet   32 

provided, turn the page where you will find the actual energy consumption for 

that week. 

Your first predictions probably will be guesses. However, as you work 

through the weeks you will be able to learn the relationships between the two 

forecasts and energy consumption. 

This task has been arranged so that you can learn to predict energy 

consumption with moderate accuracy. As in the real world, though, predictions 

can never be perfectly accurate all the time. 

Your task is to make the closest predictions possible. This is a difficult 

task, so we would like to tell you some things about it. There is no relation- 

ship at all between temperature and number of units manufactured, but both 

influence energy consumption in a direct fashion. That is, as temperature 

goes up energy goes up and as units manufactured goes up energy goes up. But 

temperature and units manufactured are unrelated. 

The first 4 weeks are practice. Do those first and if you have any 

questions ask them after you've completed these first 4. Weeks 5-79 are the 

learning trials. On each of these you make your prediction, then turn the 

page and find out actual energy consumption. 

Weeks 80-104 are test weeks. On these you will not get feedback about 

the correct values. After the 104th week, you will be asked whether the 

temperature forecast or the production forecast provides more useful 

information for prediction of energy consumption. 

Please go ahead. 



Data for Forecast 
Week No.   3/ 

33 

Temp. Prod. 

Temperature Forecast 3C 

Production Forecast 4<5~ units 



End of Week Report 

Week No.    31 
34 

Temp. Prod. Energy 

Temperature Forecast 24 

Production Forecast as units 

Actual Energy Consumption units 



Prediction of Weekly Energy Consumption 

Superior  Industries,  Inc. 
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Practice 

1. 

Weeks Training Weeks 

30. 

DATA SHEET 

Training Weeks 

55. 

Test Weeks 

80. 

2. 31. 56. 81. 

3. 32. 57. 82. 

4. 33. 58. 83. 

"raining Weeks 34. 59. 84. 

5. 35. 60. 85. 

6. 36. 61. 86. 

7 37. 62. 87. 

8. 38. 63. 88. 

9. 39. 64. 89. 

10. 40. 65. 90. 

11 . 41. 66. 91. 

12. 42. 67. 92. 

13. 43. 68. 93. 

14. 44. 69. 94. 

15. 45. 70. 95. 

16. 46. 71. 96. 

17. 47. 72. 97. 

18. 48. 73. 98. 

13. 49. 74. 99. 

20. 50. 75. 100. 

31. 51. 76. 101. 

22. 52. 77. 102. 

23. 53. 78. 103. 

24. 54. 79. 104. 

25. 

26. 

27. 

28. 

29. 



Post-Experimental Questionnaire 

1. If you had to predict energy consumption based on either the 
weather forecast or the production forecast, which would you choose? 

Check one: Weather Forecasts    Production Forecasts   

36 

2. Please try to describe the thinking process you went through in 
making your predictions. How did you go about trying to learn and use the 
relationships between temperature and production and the level of energy 
consumption? 
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INPUT ERROR SHOWN. In the above condition, which was a standard MCPL 

paradigm, there was no way for the pilots to determine the locus of the 

error, or even if there were any error, since the lack of perfect 

predictability of the environment could have been due to an unmeasured 

variable or variables. The experimental manipulation in the INPUT ERROR 

SHOWN treatment was designed to make it self-evident that the error in 

the system was in the forecasts, not in the criterion values. This was 

accomplished by showing the true values of the cues on every trial, along 

with a criterion value which was perfectly predictable from those values, 

after the forecast of energy consumption had been made by the subject. 

The materials were identical with the CONTROL materials except as 

noted. After making the forecast of energy consumption, the subject 

turned to the feedback page and got, in addition to the information 

provided to the CONTROL subjects, the values of Xt. These were presented 

as red lines in the cue bars, at the appropriate heights above the baseline, 

and as red numbers written at the bottom of the page on lines labeled 

"Actual Temperature" and "Actual Production." These entries on the 

feedback page were immediately below the respective repetitions of the 

values of the forecasts. To be consistent for the subjects, the line and 

numerical entry for the "Actual Energy Consumption" were also in red. The 

final difference, other than the implied changes in the instructions, was 

that the top of each feedback page had a prominent notation explaining the 

color coding. 

The statistical structure of the INPUT ERROR SHOWN condition was the 

same as for the CONTROL condition, with the following additional 
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information concerning the true scores. The r between the Xti was -.002, 

between Xt j and Ye was the r was .57, and between Xt2 and Ye the r was 

.82. The correlation between Xtj andXo1 (i.e., the reliability of X0l) was 

.95, and that between between Xt2 and Xo2 was .71. Hence in this 

condition, the more reliable cue was the less valid cue, and vice versa. 

Note also that in this condition the criterion would be perfectly 

predictable, were one given the true values of the predictors. 

Pages 39-41 provides an example of an "End of Week Report" and two pages 

of the instructions. The other pages, including the "Data for Forecast" 

pages, were identical to those in the CONTROL condition. 



After making your prediction of energy consumption on the data sheet 

provided, turn the page where you will find: 
39 

(1) The actual average temperature for that week, 

(2) The actual number of units manufactured for that week, and 

(3) The actual energy consumption for that week. 

Notice that the forecast of temperature may have been different from the actual 

temperature and that the forecast of units may have been different from the 

actual units. 

Your first predictions probably will be guesses. However, as you work 

through the weeks you will be able to learn the relationships between the two 

forecasts and energy consumption. You will also learn how accurate the weather 

forecast is and how accurate the manufacturing forecast is. 

This task has been arranged so that you can learn to predict energy 

consumption with moderate accuracy. As in the real world, though, predictions 

can never be perfectly accurate all the time. 

Your task is to make the closest predictions possible. This is a 

difficult task, so we would like to tell you some things about it. There is 

no relationship at all between temperature and number of units manufactured, 

but both influence energy consumption in a direct fashion. That is, as 

temperature goes up energy goes up and as units manufactured goes up energy 

goes up. But temperature and units manufactured are unrelated.. 

The first 4 weeks are practice. Do those first and if you have any- 

questions ask them after you've completed these first 4. Weeks 5 r 79 are the 

learning trials. On each of these you make your prediction', then turn the 

page and find out actual temperature and production values, as well as the 

actual energy consumption. 

Weeks 80 - 104 are test weeks. On these you will not get feedback 

about the correct values. After the 104th week, you will be asked whether the 

temperature forecast or the production forecast provides more useful information 

Figure 1-2. Pages from the INPUT ERROR SHOWN condition of experiment 1. 
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for prediction of energy consumption. You will also be asked how accjrate t-e 

forecasts themselves are; that is, how well the temperature forecasts r>re:-'c:=: 

actual temperature versus how well the production forecasts predicted act-jil 

production. 

Please qo ahead. 



End of Week Report 
Week No.  31 

Actual Data Shown In Red 
Forecast Data Shown In Blue 

41 

Temp. 
1 
Prod. 

1 
Energy 

Temperature Forecast 

Actual Temperature 

Production Forecast 

Actual Production 

Actual Energy Consumption 

3t> 
o27 

4£ 
47 

36JI 

°F 

°F 
units 

units 

units 
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MULTIPLE OBSERVATIONS. In this condition, the subjects were also "hit 

between the eyes" with the unreliability of the cues on every trial. This 

was accomplished by presenting subjects with two different forecasts on 

each trial for both weather and production. The pilots were informed that 

in this simulation they had weather forecasts for each week from both the 

"National Weather Service" and a "Staff Meteorologist", and Production 

forecasts from both the "Production Manager" and the "Quality Control 

Supervisor" (see pp. 43-44). The binder pages (see pp. 45-46) now had four 

cue columns where before there had been two, and four numerical values 

entered at the bottom of the page, with suitable modifications of the page. 

Thus, whereas the pilots in the the INPUT ERROR SHOWN condition were 

shown error after they made each prediction, in this condition the 

information about the locus of the error was given before they made each 

of their predictions. The correlational structure of the task was as in the 

INPUT ERROR SHOWN condition, with the additional feature that the two 

sets of X0| were themselves correlated. As can be inferred by squaring the 

appropriate correlations between true and observed cues described above, 

the correlation between the two values of X0j was .90, and .50 between 

the two values of Xo2. Note that giving the subjects two independent 

observations of each cue necessarily involves confounding the multiple 

observation manipulation with either cue validity or task predictability. 

The latter confounding was present in this task, with Re for this condition 

being .76, which was of course substantially higher than in the other two 

conditions. Hence, subjects in this condition had a higher theoretical 

performance ceiling than in either of the other two conditions. 



Note that there are two separate forecasts for temperature, and two 

separate forecasts for production. The separate forecasts are from different *-* 

sources and agree with one another reasonably well, but not perfectly. Two of 

the sources agree more closely with each other than do the other two. 

After making your prediction of energy consumption on the data sheet 

provided, turn the page where you will find the actual energy consumption for 

that week. 

Your first predictions probably will be guesses. However, as you work 

through the weeks you will be able to learn the relationships between the two 

forecasts and energy consumption. 

This task has been arranged so that you can learn to predict energy 

consumption with moderate accuracy. As in the real world, though, predictions 

can never be perfectly accurate all the time. 

Your task is to make the closest predictions possible. This is a difficult 

task, so we would like to tell you some things about it. There is no relation- 

ship at all between temperature and number of units manufactured, but both 

influence energy consumption in a direct fashion. That is, as temperature 

goes up energy goes up and as units manufactured goes up energy goes up. But 

temperature and units manufactured are unrelated. 

The first 4 weeks are practice. Do those first and if you have any 

questions ask them after you've completed these first 4. Weeks 5-79 are the 

learning trials. On each of these you make your prediction, then turn the 

page and find out actual energy consumption. For your convenience, the 

forecast data are repeated on the "end of week report." 

Figure 1-3. Pages from the MULTIPLE OBSERVATION condition. 



Weeks 80 - 104 are test weeks. On these you will not get feedback about 

the correct value of energy consumption. After the 104th week, you will be   44 

asked whether the temperature forecast or the production forecast provides 

more useful information for prediction of energy consumption. You will also 

be asked which sources of the forecasts agreed better between themselves, the 

two sources for temperature or the two sources for production. 

Please go ahead. 



Data for Forecast 
Week No.   3/ 
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l 
Temperature Production 

Forecast Data 

Temperature 

Temperature 

Production 

Production 

National Weather Service   *->*> 

Staff   Meteorologist JEL 

Production Manager ~J 

°F 

°F 

Quality Control Supervisor 4V 
units 

units 



End of Week Report 
Week No.    3/ 46 

Temperature 

Forecast Data 

Temperature 

Temperature 

Production 

Production 

Production Energy 

National Weather Services <3C>    °F 

Staff Meteorologist <^£    °P 

Production Manager ^^    units 

Quality Control Supervisor _JLL_ units 

Actual  Energy Consumption 3t>£ units 
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RESULTS 

The experiment is a 3 (groups) X 4 (blocks of 25 trials) factorial. 

Groups is a between variable, blocks is within. Two dependent variables, 

the lens model indices which measure the accuracy (ra) and consistency 

(Rs) of prediction, were analyzed. The means and standard deviations are 

displayed in Table 1 -2 (see also Figure 1 -A).   The Fisher's Z transforms of 

ra and Rs (Za and Zs) were then subjected to multivariate analyses of 

covariance, with the predictability of the environment (Re) being the 

covariate for blocks. The analysis of covariance was called for since in 

the construction of the data set to be presented to the pilots, the 

correlations were controlled for the entire set of 104 trials, resulting in 

sampling variability across the four blocks. The sampling variability was 

of such a nature that the third block turned out to be an anomaly, with a 

high Re and deviations from the desired cue-criterion correlations. 

There was a highly significant Groups effect for accuracy (Za), with the 

MULTIPLE OBSERVATION subjects being more accurate. Even after the 

variation in Re was covaried out, there was still a highly significant 

Blocks effect, but no Groups X Blocks interaction. The same pattern of 

significance obtained for consistency (Zs) as for Za, but as Figure 1-4 

shows, the subjects increased in consistency from Block 3 to Block 4 but 

decreased in the accuracy with which they predicted the environment (Za). 

In order to gain insight into the data without the potentially confounding 

third block, ANOVAs were conducted on the first two blocks alone. The 

only significant effect of interest was the expected groups effect. 
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Table 1-2 

The means (M) and standard deviations (s) of Fisher's Z indices for each 

block for each group for Experiment 2. 

Group Blocks 

1 2 3 4 

h h h h h *a h Za 

Control M 1.04 .62 1.16 .66 1.42 1.03 1.50 .87 

s .32 .27 .25 .19 .23 .27 .26 .17 

ERROR M 1.16 .67 1.21 .67 1.63 1.05 1.77 .92 

SHOWN s .28 .19 .44 .21 .50 .23 .35 .12 

Mult. obs. M 1.20 .86 1.26 .87 1.58 1.19 1.61 .92 

s .29 .31 .38 .24 .26 .28 .36 .18 
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Figure 1-4 Consistency (Zs) and Accuracy (ra) for experiment 1. 
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Table 1-3 

The results for the ANCOVA for the complete experiment for Za for 

Experiment 2. 

Source df SS 

Groups 2 .984 

Blocks 3 .901 

Groups X Blocks 6 .258 

Subjects X Groups 43 4.094 

Error 129 5.028 

Table 1-4 

F P 

12.63 <.001 

11.56 <001 

1.10 ns 

2.44 <.001 

The results for the ANCOVA for the complete experiment for Zs for 

Experiment 2.. 

Source df SS F P 

Groups 2 .899 6.59 <.002 

Blocks 3 8.035 46.79 <.001 

Groups X Blocks 6 .296 .72 ns 

Subjects X Groups A3 10.615 3.62 <.001 

Error 129 8.798 - _ 
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Table 1-5 

Results for the ANOVA for the first two blocks for Za for Experiment 2. 

Source df SS F P 

Groups 2 .985 12.06 <.001 

Blocks 1 .004 .11 n.s. 

Groups X Blocks 2 .010 .12 n.s. 

Subjects X Groups 43 3.223 1.84 <05 

Error 43 1.755 - - 

Table 1-6 

Results for the ANOVA for the first two blocks for Z- for Experiment 2. 

Source df SS F P 

Groups 2 .271 1.60 n.s. 

Blocks 1 .146 1.72 n.s. 

Groups X Blocks 2 .017 .10 n.s. 

Subjects X Groups 43 6.016 1.65 as. 

Error 43 1.755 - - 

DISCUSSION 

The results for the S's ability to predict the environment are striking: 

the CONTROL and INPUT ERROR SHOWN groups are virtually identical, while 

the MULTIPLE OBSERVATION group starts out higher and stays higher as 

long as criterion feedback is provided. The drop in achievement on the test 

block (4) was unexpected, and we can only attribute that decrement to a 
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loss in motivation that seems to have occurred when the subjects were 

informed that feedback would no longer be provided after week 79. This 

conclusion is essentially speculation, and is based on observations by a 

number of introductory psychology students run at Bowling Green while 

the subjects of interest were being run at the Air Force base. Comparable 

observations by the pilots are not available. 

In general, the results suggest that subjects are not disrupted by 

moderate amounts of ME error in the data on which their predictions are 

based. The MULTIPLE OBSERVATION subjects seem to have adopted some 

highly adaptive strategy to deal with the different values of the predictor 

variables, probably averaging, since their performance was quite good. In 

fact, the subjects with two observations of each predictor performed 

better than the theoretical upper bound of performance for the single 

observation conditions; they had to be doing something useful with the 

partly contradictory data, something akin to averaging over the random 

error. The data of the INPUT ERROR SHOWN pilots also suggests that the 

awareness of error in the predictors neither disrupted nor facilitated 

their ability to predict the criterion, compared to the CONTROLS. 

EXPERIMENT 3 

There are many ways of manipulating the awareness of ME error, and 

experiment 3 is a a computer implemented replication of the INPUT ERROR 

SHOWN condition of experiment 2, using college students as subjects. In 

this experiment, measurement error was manipulated by showing to the 

subjects the true values of the cues on each trial, after they had made 

their prediction for that trial. Subjects were assigned randomly to one of 
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four conditions, determined by two levels of each of two independent 

variables, task predictability (PREDICTABILITY: High vs. Low) and whether 

the subject was shown the locus of the input error (LOCUS: Shown vs. 

Hidden). 

METHOD 

Subjects. Sixty introductory psychology students served as subjects and 

received course credit for their participation. 

Apparatus. An Apple Macintosh computer was used to present stimuli 

and record subject's responses. Groups of 1-4 subjects were run 

simultaneously in a laboratory containing four computers. The room was 

designed so that each individual subject could not readily see any other 

subject's display screen. After brief instructions, the experimenter sat at 

a desk on one side of the room and was available to monitor and assist 

subjects throughout the experiment. 

Procedure. Upon arriving, the subjects were seated in front of the 

computer which was displaying the appropriate cue display for the first 

trial. They read a brief set of printed instructions, asked questions if 

necessary, then proceeded with the task. The instructions described the 

same scenario as used in Experiment 2, that the experiment was a study in 

"how people use data", that they were to play the role of an executive 

trainee whose present task was to predict the weekly amount of energy 

consumed by the organization, to base their predictions on two forecasts, 

etc. On the monitor, the subjects saw two black bars representing the 

values of X0, one labeled T (for temperature) and another labeled U (for 

units produced). A third black bar, identified by a number, provided the 

subjects a means of visually representing their predictions. The size of 



54 

these bars was scaled according to the Macintosh screen, which uses 

"pixels" ( a pixel being approximately .35 mm) as the units of measurement 

in the output window. At all times, windows on the screen reminded 

subjects of the meanings of the bars. 

The entire screen is 491 pixels wide by 299 pixels high. Subjects saw 

a graph which measured 348 pixels horizontally and 200 pixels vertically. 

The bars, 12 pixels wide, were spaced equally on the horizontal axis. The 

height of the bars varied according to the cue values assigned to each bar. 

Subjects made their predictions by moving the numbered bar up and 

down. When they pressed the key "U", the bar moved up; "D" moved the bar 

down. When they were satisfied that the bar represented their prediction, 

subjects depressed the return key. A fourth black bar, labeled E (for 

energy), appeared immediately on the screen and remained on for ten 

seconds. In the notation presented in the introduction, this bar represents 

F0 The screen was then erased and the cue display for a new trial 

appeared. At this point in the procedure a manipulation, to be described 

below, was introduced. This procedure was followed for 104 trials, the 

first four of which were practice trials and dropped from the analysis. The 

entire sequence of trials took about 45 min to complete, after which a 

brief post-experimental questionnaire was administered. 

PREDICTABILITY. The 104 trials were generated by combining values of 

temperature and units produced such that before error was introduced the 

criterion value was equal to 2/3 XoJ ♦ 1/3 Xo2. The multiple correlation 

between the cues and criterion, Re, was manipulated by the magnitude of 
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with the Shown conditions, the following events occurred on each trial. 

Subjects first depressed the return key and the criterion bar appeared on 

the screen. Subjects were allowed to study the four bars on the screen 

indefinitely. After ten seconds, the computer beeped and a message 

appeared at the top of the screen indicating that pressing the "P" key 

allowed them to proceed to the next trial. 

RESULTS 

Multiple regression analyses were run on each subject's data and the 

len's model indices Rs (consistency) and ra (accuracy) were obtained for 

each subject, as in Experiment 2. These indices, after Fisher's Z 

transformations, were treated as dependent variables in a multivariate 

ANOVA, with Predictability (high vs. low) and Locus (Hidden vs. Shown) of 

error as the independent variables. Subjects in the High task predictability 

condition did significantly better than those in the Low task predictability 

condition with respect to both Rs (F = 7.76, p <.007) and ra (F » 27.80, p < 

.0001). 

Showing subjects that there was measurement error in the input side of 

the environment had no effect on either their consistency (F = 0.17, n.s.) or 

achievement (F = 0.01, n.s). Nor was there a significant interaction 

between Level and LOCJS of error (r ■ 0.03 for Rr and F - 0.04 for rJ. 

Trials 51 -100.    Performance in an MCPL tasks tends to improve rapidly 

during the beginnning of the task and then level off. Hence, the second half 

of the trials were analyzed separately. In addition, these last 50 trials 

were split into two blocks of 25 and this blocks variable was then treated 

as a within subjects factor in a repeated measures analysis of variance. 
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Again, Rs and ra were the dependent variables and error Locus and task 

Predictability were the independent variables. Results were the same as 

when the entire set of trials was analyzed. A main effect for Level of 

error was obtained for both Rs (F = 14.41, p < .0004) and ra (F = 35.91, p < 

.0001). However, there was no effect for Locus and no interaction between 

Predictability and Locus. 

Univariate tests of the within subjects factors revealed no main effect 

for blocks, which indicates that subjects' performance remained relatively 

stable between trials 51 -75 and 76-100. There was no interaction 

between blocks and Locus, but there was an interaction between blocks and 

Predictability forra(F = 50 90, p < .0001). This interaction was not 

significant for Rs, however. Finally, there was no significant three-way 

interaction between block, Locus, and Level. 

DISCUSSION 

This finding of highly significant Predictability effects, typical in 

MCPL tasks, confirms that the subjects were attending to the task. The 

failure to find significant effects for Locus, with the sample sizes 

involved, suggests that knowledge of the presence of ME error in the input 

data does not influence the prediction strategies of subjects to an 

interesting degree, if at all. This is tantamount to saying that subjects 

behave optimally with regard to the processing of measurement error in the 

information on which they base their predictions, since the rational 

strategy in this environment is to ignore the error and to attempt to 

compute the correlations between X0 and FQ. The conclusions of this study, 

then, are consonant with those of Experiments 1 and 2. 
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EXPERIMENT 4 

The purpose of this experiment is to investigate the possible effects of 

making subjects aware that there is measurement error in the feedback. It 

has been generally accepted that learning in a standard MCPL environment 

is highly inefficient, and that one possible reason is that subjects "chase 

error" in the feedback; in effect subjects see the task as a deterministic 

one rather than as a probabilistic one (Brehmer, 1980). Thus subjects may 

perceive the task as requiring them to be exactly correct on each trial. 

This leads us to the somewhat paradoxical expectation that, should we give 

subjects less precise feedback, then they might not see the task as 

deterministic, and might not futilely chase random error. 

In this experiment, the performance of subjects given the exact value of 

F0 will serve as a baseline against which to assess the performance of 

subjects who are given feedback about the range of values into which F0 

would fall 2/3 of the time. If the above speculation about the assumption 

by subjects that the MCPL task is deterministic is correct, then the 

performance of the group getting the nonspecific feedback should exceed 

that which gets the typical point feedback. 

METHOD 

Subjects. Forty introductory psychology students served as subjects as 

part of a course requirement. 

Apparatus. The apparatus and procedure were the ssr^e as ir\ Experiment 

3, except as noted. 

Procedure. Subjects were assigned randomly to one of two conditions, a 

standard feedback condition, F0, and a condition in which the feedback was 
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presented as a range, F0 + e. Subjects were seated in front of a computer 

and instructed as above.  On the computer screen, subjects saw two hollow 

columns representing the input values, Xj, labeled T and U, and a third, 

hollow column for predictions (see p. 60), labeled with the subject's 

initials. The dimensions of the screen and graph were identical to 

experiment 3. The only exception is that all three columns were of equal 

height (200 pixels). Each hollow bar contained a prominent, horizontal line 

somewhere across its width. The lines in the first two columns 

represented the cue levels. The use of columns was a departure from 

typical presentation format, and was adopted to facilitate the  ■ 

representation of F0 + e. 

Subjects again moved the prediction bar up or down by pressing either 

"U" or "D" on the computer keyboard. After making their predictions, 

subjects pressed the return key and a fourth hollow column, E, appeared on 

the screen. The representation of F0 in this column constituted the 

independent variable in this study, as described below. All four bars 

remained on the screen indefinitely and subjects were allowed to study 

them for as long as necessary. When finished, subjects pressed "P" and the 

screen was cleared for a new trial. 

Subjects followed this procedure for 104 trials, of which the first four 

were practice and thus not analyzed. The relationship between the cues and 

criterion was identical to that used in Experiment 3. Only one level of 

error was used, Re being equal to .71 in both conditions. Cue validities 

were the same as in experiment 3, .78 and .40. Again, either T or U could be 
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Figure 1-4 The input display for experiment 4 



the more valid cue, to avoid confounding cue validity with cue label. 

After making their prediction on a given trial, subjects pressed the 

return key and a fourth hollow bar, the feedback bar labeled E, appeared on 

the screen. In the F0 only condition, subjects saw a straight line inside the 

bar (see p. 62) which indicated the point prediction of the value of energy 

consumption, as contaminated by an error component as in a standard MCPL 

study. In the F0 + e condition, subjects saw a shaded portion of the 

otherwise hollow column, and were told that the actual value of the 

criterion would be inside this range on 2/3 of the trials (see p.63). This 

range was generated by adding and subtracting one standard -standard error 

of estimate from the criterion value after error was added to it. 

RESULTS 

As in Experiment 3, the trials were split into blocks of 25 and Blocks 

treated as a within subjects factor. A repeated measures ANOVA was run 

with Rs and rg as the dependent variables, feedback type (F0 only vs. F0 + e) 

as the between groups factor and Blocks as the within groups factor on 

blocks 3 and 4 There was absolutely no main effect for feedback type in 

either Rs (F - O.OO, n.s.) or ra (F - 0.10, n.s.). 

Univariate tests of the within subjects factors revealed a significant 

main effect for Blocks in Rs (F = 9.78, p < .0034) and ra (F = 11.33, p < 

.0018), indicating that subjects did better in the last block of 25 trials 

than in the third block of 25 trials. No Blocks X feedback type interaction 

obtained for Rs, but this interaction was significant for ra (F = 5.92, p < 

.0198). 
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THE ACTUAL AMOUNT OF ENERGY IS REPRESENTED 

BY THE LINE SHOWN IN THE BAR LABELED 'E1 

PLEASE PRESS V TO PROCEED TO THE NEXT TRIAL. 

U T RMO 

► 

Figure 1-6. The feedback display from the F0 condition of experiment 4. 
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THE ACTUAL AMOUNT OF ENERGY WILL FALL WITHIN 

THE SHADED AREA ABOUT 2/3 OF THE TIME. 

PLEASE PRESS "P" TO PROCEED TO THE NEXT TRIAL. 

U RMO 

I 

Figure 1-7. The feedback display from the F0+e condition of experiment 4 
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DISCUSSION 

It appears that indicating to subjects that error is present in the 

feedback side of the environment makes as little difference as showing 

them it is in the input side. This was unexpected. 

EXPERIMENT 5 

This study employed the MCPL paradigm to investigate the effect of 

error type, i.e., ME vs. SF. No distinction is made concerning the locus of 

error in this study, that is, even though subjects might assume that there 

are errors on some trials, nothing in the procedure to be described would 

allow the subjects to discern whether that error was In the X0 or in the FQ. 

METHOD 

Subjects.  Forty introductory psychology students served individually 

as subjects in partial fulfillment of a course requirement. 

Apparatus. Stimulus presentation and response recording was 

accomplished on an Apple II* computer, with a 16 in Sanyo monitor on a 

stand directly above the keyboard, approximately at eye level. The subject 

was seated at a comfortable, self-adjusted, distance from the apparatus. 

Procedure. Subjects were assigned to one of two treatments, ME or SF 

Error. Both verbal and written instructions were given. First the subject 

typed in his or her initials. Immediately three vertical bars appeared on 

the monitor, labeled A, B and with the subject's initials, from left to right. 

The displays were similar to those shown above. The subjects predicted 

the value of a target, C, from the values of A and B. They were told (in 

simple terms) that the function forms relating C to A and B were both 

positive linear, and instructed how to respond. Subjects made their 
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predictions by moving the vertical bar which was labeled with their 

initials. One key controlled upward movement, another controlled 

downward movement. When the subject was satisfied that the bar 

represented the prediction, he or she pressed "return". Upon depression of 

return, a fourth bar, labeled C, appeared and remained on for about 4 

seconds. The screen was erased, and a new trial with new values of A and 

u oppcdi cu. The initial height of the response bar was selected randomly 

on each of 100 trials. In the notation of Fig. 1, A and B are Xoi values, the 

final height of the response bar is Ys, C is F0. 

The ME condition. A and B could take on any value from 1 to 10. The 100 

trials were composed of a factorial combination of A and B, such that 

before error was introduced the criterion value was the arithmetic average 

of A and B. The variance of e determined the multiple correlation between 

the cues (A and B) and the criterion (C), Re. The computer added the random 

component to the sum of A and B before presenting the C bar to the subject. 

The SF condition. The same factorial combination of A and B served as 

cues. In this treatment, however, Ye was exactly the mean of A ♦ B, except 

that on some predetermined number of trials a random value was selected, 

with replacement, from the distribution of (A ♦ B)/2 and presented as Ye. 

Thus, in the 5F condition, a trial with A = 1 and B = 1 would be, on the 

average, predictive of a very low value of C, but on an SF trial might be 

associated with a C of 10. In both ME and SF, error levels were selected 

randomly for each subject, given the restriction that moderate to high 

levels of Re should result. 
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Twenty four subjects were run in the SF, 16 in the ME condition. At the 

time the study was conducted we knew of no analytical means by which a 

given Re in the SF condition could be predetermined, a problem we solved, 

at least in large part, later (Doherty & Sullivan, in press). 

For the ME condition, the Re could be determined ahead of time by 

selecting an appropriate variance for the error term to be added to either 

side of the prediction equation. Such constants were sampled randomly 

from a distribution of values that would give relatively high Re values. 

Eight subjects in the SF condition for whom Re < .60 were excluded from 

analyses involving comparisons with the Measurement Error group, leaving 

16 subjects per group. The mean Re for the remaining 16 SF Ss was .81, 

while the corresponding mean in the Measurement Error group was .87. The 

difference between mean Re values was not significant (t(30) = 1.39, n.s.). 

Note that this operation loaded the dice against the SF condition. 

RESULTS 

In order to assess the impact of error type on predictions a MANOVA 

was run with SF vs. ME as the independent variables, and with Re and r„ as 

the dependent variables. Both Rs and ra were higher for System Failure 

(contrary to the direction of difference for Re) but the overall test was not 

significant (for Rs p<07, forra p<. 13). 

Trials 51 -100 The second half of the trials was analyzed separately. 

The mean values of Re were again similar, with Re for SF and ME being .84 

and .88, respectively. The MANOVA on ra and Rs was significant (p < .01), 
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the difference being due to the differences in Rs> .95 vs. .84, for SF vs. ME, 

respectively. The ra values did not differ, being .76 and .70, respectively. 

An Analysis of the SF data only. The error to which SF subjects were 

exposed was of such a nature that they could often be exactly correct, were 

they to employ an analytical approach (Hammond, 1986) and to consider the 

trials on which spurious feedback occurred as irrelevant. Thus, an analysis 

of the data of all 24 SF subjects was conducted. The mean value over all 

trials of the correlation between Ys and Y'e (see figure 3 for the relation 

obetween these terms) was significantly greater than Re, via a t-test for 

correlated observations, and numerically greater than Re for 21 of the 24 

subjects. But the theoretical upper bound of the correlation between Ys and 

Y'e is Re, given a linear environment. Thus, subjects had developed a model 

of the environment that was superior to that normally considered possible, 

that is, they apparently learned to ignore the error trials and to maintain 

the correct model which had been deliberately designed to be as simple and 

obvious as possible. 

DISCUSSION 

The manipulation of the SF error in this study, as in Kern (1982), had a 

significant impact on judgments, though in the opposite direction from that 

found by Kern. Many subjects were able to ignore error trials, and to 

continue to predict the criterion accurately. This is especially clearly 

shown in the high correlation between Ys and Y'e. Clearly, error type has 

powerful effects on behavior, but these effects have as yet unknown 

situational determinants. 
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The study was one of the earliest we did, and was an early test of the 

potential effects of the difference between 5F and ME error. Given such a 

limited goal, it was designed with the barest of demands on subjects' 

learning abilities, i.e., equal weighting of variables with positive linear- 

functional relations to the criterion. There are, however, several 

generalizations which can be asserted based in part on the data, in part on 

the larger body of MCPL research. First, note that the 5F subjects did 

extraordinarily well on what might have been expected to be a truly 

difficult task. One explanation is that the simple task allowed, or even 

elicited, analytical rather than intuitive thought (Hammond, 1986).  But 

the subjects' rather impressive performance in the face of, in some cases, 

so many error trials, requires further exploration. 

These results strongly suggest a hypothesis that, if true, should have a 

significant impact on the the design and analysis of MCPL studies, and on 

some aspects of our conception of feedback systems. That is, subjects are 

powerfully rewarded, and presumptively equally powerfully influenced by, a 

"direct hit," a trial on which Ys-Ye ■ 0. There is an implication in these 

results that the typical subject has a criterion for error which is radically 

nonlinear with Ys-Ye. Nonlinearity is implicitly assumed by investigators 

who use root mean squared error (RM5) in designing feedback systems. But 

RMS nonlinearity is such that the penalty per unit error is greater as Ys-Ye 

increases. The present results and observations of subjects' behavior 

suggest that the the largest psychological penalty occurs with the 

subject's observation that Ys-Ye * 0. This speculation is treated in another 

context in Doherty & Balzer (in press). 
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Experiment 6 

The present study employed a manipulation using a plant growth task 

similar to the one used by York et al (1987) in order to determine the 

differential effects of SF and ME error. In one condition (ME), the two cues 

were each degraded by ME error only. In a second condition (SF), subjects 

also encountered, on 30% of the trials, SF error in one of the two cues. It 

was anticipated that subjects presented with ME error would do better at 

the task than subjects confronted with both ME and SF error, even though 

the SF task was constructed to have a more predictable environment. 

Method 

Subjects. Thirty introductory psychology students participated in 

groups of 1-4 in partial fulfillment of course requirements. 

Materials.  Macintosh computers were used to display two "meters", one 

labeled "Level of Water" and one labeled "Level of Fertilizer", using a 40 

point graduated scale marked in increments of 5 (see page 70). To avoid 

confounding cue label with cue validity, cue label was randomized within 

experimental conditions, so that cue 1, on the left, was water about half 

the time and fertilizer about half the time. On each trial, subjects were 

asked to predict a plant's growth based on the two cues. In pilot testing 

most subjects reported that they had relied heavily on their previous 

knowledge of how water and fertilizer affect plant growth, hence the 

instructions stressed that previous knowledge would not benefit them on 

this task and should be ignored. The subject's response was displayed 

immediately to the right of the cues, and, to the right of that, "Actual 

Growth" was given as outcome feedback on a scale marked in increments of 

1 from 1 to 9 (see p. 71). The units chosen for the cue and criterion scales 
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Figure 1-8. The input display for experiment 6. 
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were arbitrary. 

Task Design. There were 52 two-cue trials, with outcome feedback 

given on each trial. Each cue was allowed to take on true values ranging 

from 2 to 38. The cues were uncorrelated, and had positive linear 

relationships with the criterion. Error in the cues was operationalized by 

treating each cue as a true value and adding random error to the true value 

to produce observed values. True score cue validities for the ME treatment 

were .81 and .32, for cues 1 and 2, respectively, with a total task 

predictability (Re) of .87. For the SF treatment the Re based on the true 

scores was .99, and the true score validities of the cues were .89 and .46. 

Five observed values were generated for each cue on each trial, and were 

given to subjects sequentially as multiple meter readings. These were 

represented as asterisks adjacent to the graduated scale. 

For the ME condition, the error was a random variable sampled from a 

population with a mean of 0 and a standard deviation of 2. On each trial 

five error values were added to the true value to produce five observations. 

For the SF condition, a trial was designated an SF trial with a probability 

(p) of .3. The five observed values for cue 1 on an SF trial consisted of 

values chosen randomly, with replacement, from the distribution of 

possible cue values, without regard for the functional relationships 

between cue and criterion. Thus there were about 15 (.3 x 52) such trials. 

Only cue 1 contained system failure error on these 15 trials; cue 2 was 

generated as in the ME only condition. On the remaining approximately 37 

trials, both cues had ME error only. 

A number of SF error distributions were generated according to the 

above statistical characteristics, and, in light of our expectation that SF 
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error would be more disruptive than ME error, 15 were chosen so that the 

mean task predictability based on observed values for the 5F condition 

would be greater than for the ME condition. The average Re based on all 

observed values, i.e., after error was added to the cues, was .90 for the ME 

treatment and .92 for the SF treatment. The difference between the means 

of the Re values in the two treatments was significant (t(28)=3.05, p<01). 

Procedure. Four computers were arranged in a large laboratory so that 

subjects could not see one another while they were performing the task. 

Upon arriving, each was seated at a computer and provided with printed 

instructions. Time was allowed for subjects to ask any questions or voice 

any concerns about the task. 

On each trial, the first observations of cues 1 and 2 were presented 

simultaneously for about one sec, followed by the simultaneous 

presentation of the second observed values, and so on. Each pair of cue 

values was erased prior to the presentation of the next pair. In short, on 

each trial, subjects saw five pairs of cue values flash on the screen during 

a 5-sec interval. After the fifth pair of cue values was erased, subjects 

were prompted by the computer to predict the growth of the plant for that 

trial. Subjects entered their predictions by depressing a single numeric 

key (ranging from 1 to 9) on the computer keyboard. Subjects had as much 

time as they wanted to make their predictions. Immediately after subjects 

entered their predictions into the computer, "Actual Growth" (i.e., the 

criterion) was given as outcome feedback. This remained on the screen for 

about ten sec, after which the screen was cleared and the next trial began. 

Upon completion of the 52 trials, subjects filled out a post-experimental 

questionnaire. This included questions about which predictor they would 
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use if they could only use one to predict from and the "percentage of 

importance" they thought each predictor had. Subjects were then debriefed 

and thanked for their participation. 

Results. The basic index of performance in this investigation was the 

accuracy with which the subjects predicted the criterion value, ra. The 

mean ra values are presented in Table 1. 

Table 1 

Mean lens model indices1 for all trials and for the subset of trials. 

All trials Subset of trials 

Condition ra Rsi RS2 ra ß2          SD 

ME 66 78 78 70 27          1.86 

5F 53 59 68 07 24         1.50 

1Mean correlations are via Fisher's 2 transformation, decimals omitted. 
The two multiple R values differ with respect to what the responses 
were regressed upon: RSJ on the true scores; RS2 on the true scores 

except that on SF trials the mean of the five SF observations replaced the 
true scores displaced by those errors. p2 's tne Deta weight for the 

second cue, i.e., the cue without SF error. 

As anticipated, subjects in the ME condition had a significantly higher 

ra than subjects in the SF condition (t(28) ■ 2.52, p < .02). In addition, the 

variance of ra for the SF group was greater than the variance for the ME 

group (Fmax « 5.80, p < .01). While the assumption of homogeneity of 
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variance was not met, the fact that there were an equal number of 

subjects in both conditions makes the difference between the means 

interpretable (Kirk, 1982). 

The multiple correlation between the cue values and the subject's 

predictions (Rs) is normally a measure of how consistently subjects used 

a linear policy in making predictions, but in this study the multiple 

observations make Rs a much less straightforward index of consistency 

than in a traditional MCPL study. One value for Rs (call it RS1) was 

obtained by regressing the subject's predictions on the true values of the 

cues. Subjects in the ME condition had a significantly higher RS1 than 

subjects in the SF condition (t(28) = 3.66, p < .01). Regressing the 

subject's judgments on the true scores in this study is not fully 

appropriate, however, since in the SF error trials subjects never saw the 

true values, while in the ME condition the mean of the five observations on 

a trial was approximately equal to the true score on that trial. For any 

subject who averages the five cues and uses the average as a basis for 

prediction, consistency in cue usage will be underestimated by Rs, 

especially in the SF condition. In an effort to overcome this problem, we 

went back to the SF trials and replaced the true score values for cue 1 

with the mean of the five random observations on that trial. This value is 

a more accurate representation of the value that the subject who was 

trying to use cue 1 might infer on the SF trials. This value, RS2, was not 

significantly higher for subjects in the ME condition (t(28) = 1.89, n.s.). 

In order to determine how subjects were using the cues, one would 
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normally look at the beta weights from the regression analyses. However, 

as should be clear from the discussion of Rs, the beta weights calculated 

on all 52 trials would provide little insight into why subjects in the SF 

error condition did so much worse than subjects in the ME condition, 

because SF error contaminates the regression analyses used to calculate 

these weights. Therefore, the data were broken up into subsets. 

Analyses on Subsets of the Data. One might speculate that erratic 

readings introduced by SF error may have served as a "signal" to the 

subjects to ignore cue 1 and concentrate on cue 2 in making their 

predictions. This was tested by conducting regression analyses on only 

those trials which had SF error and comparing the results to regressions 

done on a random sample of an equal number of trials from the ME 

condition subjects. A significant difference in the appropriate direction 

between the betas for cue 2 (ß2) between the two groups would indicate 

that subjects in the SF condition had indeed used the high within trial 

variance of the observations of cue 1 as a higher order cue, and were 

simply ignoring the cue with SF error on those trials. The results of these 

analyses are presented in Table 1. This hypothesis was not supported; ß2 

for the ME group were not significantly higher than those for the SF group; 

(t(28) * .23, n.s.). Had subjects ignored cue 1 on these particular trials, 

they could have had much higher achievement scores, as indicated by the 

correlation between cue 2 and the criterion. This is, of course, true of 

both conditions, even across all 52 trials, but the ra values on the 15 SF 

trials were extremely low. 

Normally, one thinks of the regressiveness of responses as an index of 
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whether subjects had properly accounted for cue unreliability (Kahneman & 

Tversky, 1973). Hence the standard deviations of the subjects' responses 

on the subset of the trials in the two conditions were calculated. The SF 

standard deviations were lower than those of the ME subjects (t(28) ■ 

-2.62, p < .02). In these circumstances, however, the presence of 

regressiveness of responses is not sufficient evidence to infer that 

subjects were appropriately discounting the unreliable data. Consider an 

5F subject who is averaging and using the 5 observations. The low 

variance of the means of those 5 scores across trials and the tendency of 

those means to cluster around the midpoint of the scale would lead to 

predictions with less variance. Hence in this case a diminished response 

variance might well be reflecting jnsensitivity to cue unreliability. 

Subjective Weights. The subjects were asked to state which cue, 

water or fertilizer, they would use if they could only use one, and to 

distribute 100 points between the two cues. An inspection of the 

subjective weights indicated that subjects were able to discern the 

environmental structure; 27 of the 30 subjects correctly chose the more 

important cue. For 26 of the 27, the subjective weights were in the same 

order as the ecological validities. One subject selected the correct cue 

but gave equal weights. 

Discussion 

The results indicate that, unlike ME error, SF error significantly 

reduces an individual's ability to cope with an uncertain environment. 

Subjects who were presented with the classical form of error (ME) did 

reasonably well on the task, in terms of ra, though nowhere close to the 
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statistical limit of achievement. But the presence of error in the form of 

random observations unrelated to the data generating process, i.e., SF 

error, degraded performance still further. This is in spite of the fact that 

the Re for the SF group was significantly (though only slightly) higher than 

for the ME condition. In essence, we deliberately "stacked the deck" 

against finding a significant difference, since the criterion was more 

predictable in the 5F condition  However, subjects in this condition still 

performed poorly. 

A possible strategy for subjects to deal with the perceptually salient 

uncertainty introduced by SF error was alluded to earlier. Subjects could 

have ignored the cue with SF error (cue 1) on those trials. They could have 

focused on and used only cue 2 (the less valid cue) for their predictions. 

This hypothesis was tested and found to be untenable by the failure to find 

a difference between p2 values in the subset analysis.   It appears that 

subjects were attempting to use the cue with SF error in it, although it is 

unclear just how they were using it. 

While the subjects in the SF condition did not perform well in the sense 

of being able to predict the point values of the criterion value accurately, 

they were surprisingly accurate in making the dichotomous choice of 

which cue was more important  SF error had a much less disruptive effect 

on their retrospective accuracy in cue selection than we had anticipated. 

SF errors may cause disruption in other paradigms as well, though 

"error" must be defined differently in these tasks. We now turn our 

attention to a second paradigm in which we have manipulated error, 

Wason's 2-4-6 task. 
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PART 2 

RESEARCH ON DATA ERROR USING WASONS 2-4-6 PARADIGM 

A. Prior Research 

B. Research Conducted Under This Contract 

Experiment 7. Single-Rule and Two-Rule versions by three 
Feedback conditions: 1) No Error, 2) Informed Error, and 
3) Uninformed error 

Experiment 8. The effects of Informing vs. Not Informing on Error and 
No Error conditions- Single-Rule version only. 
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A. PRIOR RESEARCH 

According to Popper (1959), rational scientific inquiry should involve 

active attempts to disconfirm, rather than confirm, proposed hypotheses. 

However, many studies of hypothesis testing using error-free data have 

shown that most subjects prefer to examine evidence predicted by the 

hypothesis to occur, a "positive test (+test) strategy" (Klayman and Ha, 

1987, p. 213). Such data are most likely confirm, and cannot disconfirm 

hypotheses (Wason, 1960; Mynatt, Doherty & Tweney, 1977, 1978;Tweney, 

et al., 1980). Such seemingly irrational behavior, shown as well by many 

working scientists (Mitroff, 1974), may serve as a heuristic for 

developing a hypothesis and establishing the reliability of the data before 

attempting to disconfirm (Mynatt, Doherty & Tweney, 1977, 1978; Tweney, 

Doherty & Mynatt, 1981, Klayman & Ha, 1984; Tweney, 1985). 

Gorman (1986) used a group problem-solving task based on a card game 

called "Eleusis" to assess how warning subjects that system failure error 

might occur affected hypothesis testing. The Eleusis task involved having 

subjects play individual cards to discover sequencing rules about card 

order, such as 'Alternating red and black".   Groups of four subjects were 

assigned to one of three types of strategy instructions: confirmatory 

(emphasizing nests), disconf irmatory (emphasizing -tests), or no 

strategy. In an earlier study using Eleusis, Gorman et al. (1984) had 

demonstrated that groups shown how to disconfirm their hypotheses using 

a negative test strategy performed significantly better than groups either 

shown how to confirm hypotheses using a positive test strategy or given 

no si. «ncyy nisi.. uU.ufib. All gf oups were told thai "On anywhere from 0 

to 20 per cent of the trials, the feedback you receive will be inaccurate" 
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(Gorman, 1986, p. 89), though none of the feedback actually contained 

error. Gorman (1986) found that knowing that the data might contain error 

severely disrupted performance on the task, even for groups given 

disconfirmatory instructions, since a significant amount of subjects' time 

was spent replicating tests to check for error. In addition, subjects 

appeared to use the knowledge of the possibility of error to classify 

potentially useful disconf irmatory evidence as error, which also disrupted 

performance. 

While Gorman found that subjects who knew about the presence or 

possibility of system failure error tended to ignore disaffirming data 

and/or preferred to replicate only disconf irming trials, several 

methodological difficulties were present which could have affected 

interpretation of the results. Gorman focused on group problem-solving, 

used a possible (0-2095) rather than an absolute error information 

condition, and did not include an actual data error condition and a no-error 

instructional condition for comparison to the possible error conditions. 

Wason's 2-4-6 Rule Discovery Problem. Based in part on the results of 

studies by Gorman and by Kern (1982, cf. infra), as well as on the issues 

raised by these studies' methodological limitations, a major purpose of 

the studies to be reported was to compare the effects on hypothesis- 

testing heuristics of providing vs. not providing information that error 

might occur by utilizing a well-documented experimental task under both 

actual error and no error feedback conditions. The experimental task 

chosen, Wason's (1960) 2-4-6 rule discovery problem, has frequently been 

used to evaluate the roles of positive (potentially confirmatory) and 

negative (potentially disconf irmatory) test strategies involved in 

hypothesis testing under various instructional conditions (Tweney et a?., 
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1980; Walker & Tweney, 1983; Walker, 1985, 1986; Gorman & Gorman, 

1984, «layman & Ha, 1985; Tukey, 1986). 

In Wason's original version of the task, subjects attempted to discover 

the general number-sequencing rule, "three ascending numbers," when 

given the sequence, "2, 4, 6", as a positive instance of the rule. They could 

test their ideas about the rule with additional sequences, which the 

experimenter responded to as either fitting or not fitting the general rule. 

Subjects were asked to state the rule when they felt sure they knew what 

it was, based on the outcomes of their tests. If the first rule 

announcement was wrong, they could continue to make more tests and rule 

announcements. Wason's choice of a very general rule and a misleadingly 

specific example was intentional, "...so that several plausible hypotheses 

about an unknown rule could be supported by citing instances which 

confirmed them, or refuted by citing instances which disconfirmed them" 

(Wason, 1962, p.250). For instance, a plausible hypothesis (e.g. "three even 

numbers") could only be disconf irmed by using a negative test strategy 

(e.g. testing a sequence inconsistent with the hypothesis, such as "1-2-3"), 

but which turned out to be consistent with the experimenter's rule. 

The utility of a negative test strategy was demonstrated by the small 

number of subjects who correctly stated the rule on the first 

announcement. These subjects "tended both to eliminate more 

possibilities, and to generate more negative instances than did those who 

announced a first incorrect rule" (Wason, 1960, p. 139). On the other hand, 

of those subjects who first announced an incorrect rule, the majority 

initially proposed one very specific hypothesis, such as "three even 

numbers" or "numbers separated by two". Generally these subjects 

gathered confirming evidence for their hypothesis by conducting positive 
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tests, such as "even numbers~6, 8, 10", and did not attempt 

disconf irmation by conducting negative tests, such as "even numbers--3, 

5, 7". Thus, by focusing their attention on positive instances of their 

hypotheses, most subjects declared rules that were sufficient to explain 

the obtained evidence, but did not specify both the sufficient and 

necessary conditions for all the possible evidence that could actually fit 

the rule. 

Error Studies Utilizing the 2-4-6 Problem. In most studies of the Wason 

2-4-6 task, subjects were given accurate feedback about whether or not a 

hypothesis test fit the rule or not, though two studies have included error 

or the possibility of error. Markowitz and Mynatt (1982), using a 

computer-implemented version of Wason's task with and without system 

failure error, reported that, of five subjects given some erroneous 

feedback, all were much less likely to give up proposed hypotheses and 

more likely to retest data if the feedback disconf irmed their current 

hypotheses. However, the sample was extremely small and, as in Kern's 

(1982) study, Markowitz and Mynatt did not differentiate between the 

effects of potential error information and actual system failure error on 

hypothesis-testing heuristics. 

Gorman (personal communication, February 10, 1987) recently 

completed a series of four experiments utilizing progressively more 

difficult versions of the Wason 2-4-6 task to study the psychological 

effects of the knowledge of the possibility of system failure error when 

no error was actually present. As in Gorman's 1986 Eleusis study, 

subjects in the possible error conditions were always told that 0 to 20 per 

cent of the trials might contain random feedback error. The first 

experiment, comparing possible error to a no possible error condition, did 
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not find significant differences in solving rates, though possible error 

subjects used significantly more trials to check for errors before reaching 

the correct solution. In the second experiment, two dimensions, color and 

letter, were added as distractions to the task. Subjects wrote each 

sequence in either red or black or a combination of red and black followed 

by one of 26 letters of the alphabet. They solved for an alternating 

sequencing rule (either odd-even-odd or even-odd-even) under possible 

error and no possible error conditions. Only a few subjects were able to 

solve the task and there were no significant differences between 

conditions in solution rates. As in the first experiment, possible error 

subjects used significantly more trials, as well as significantly more 

repeated trials and trials they expected to be incorrect. 

Since the results of Gorman's second experiment appeared contrary to 

those obtained earlier for the Eleusis task (Gorman, 1986), a third 

experiment was conducted in which the alternating rule was used again 

without the added color and letter dimensions. All subjects were initially 

given ten sequences and the results of ten tests under either possible 

error or no error conditions. After reviewing the sequences and tests, 

subjects were allowed to test five additional sequences. Providing initial 

sequences and limiting the number of tests was designed to inhibit 

subjects' use of repeated trials. However no significant differences in 

solution rates, expected number of incorrect trials, and number of 

repeated trials were found between the possible error and no error 

conditions. 

Gorman's fourth experiment was designed to more closely simulate the 

demand characteristics of the Eleusis task by having subjects again solve 

for an alternating rule, but the rule required that the sequences had to 
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alternate even-odd-even within themselves and across the series of 

sequences. As in the third experiment, subjects were given ten sequences 

and the test results and allowed to make five additional tests. A 

significantly greater number of subjects in the no error condition solved 

the task as compared to those in the possible error condition, though no 

significant differences between conditions were found for the number of 

expected incorrect trials and the number of repeated trials. While the 

analysis of the results is still incomplete, Gorman has speculated that in 

the first two experiments (when tests were independent and the 

opportunity to repeat trials was unlimited) subjects may have 

counteracted the effect of possible error on problem solution by 

increasing the number of trials and repeating disaffirming tests. 

The psychological effects of a subject's knowledge of the possibility of 

system failure error should be distinguished from the effects of actual 

data error. Markowitz and Mynatt (1982) demonstrated that the presence 

of actual error increased the overall number of trials and the number of 

repeated trials, while decreasing successful solution rates. Gorman 

(1987) analyzed the effects of subjects' knowledge of possible error, but 

did not find a significant difference in solution rates between possible 

error and no error groups. It should be noted that unlike Markowitz and 

Mynatt, whose subjects were told that error would occur occasionally and 

were given actual system failure error, Gorman gave subjects a range of 

possible error (0-208) but no actual error. Thus, subjects' information 

about the presence of error differed between the studies and that 

difference may have affected the results. 
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B. RESEARCH CONDUCTED UNDER THIS CONTRACT 

Two experiments were completed for this phase of the contract. 

Experiment 7 was designed to compare problem-solving styles in both 

Single ("Dax/Not Dax") and Two-Rule ("Dax/Med") computerized versions of 

the Wason 2-4-6 rule induction task using three data feedback situations: 

(1) No Error (2) Informed Error and (3) Uninformed Error. The Two-Rule 

version CDax/Tled") was originally presented as part of a four-experiment 

study by Tweney et al. (1980), which attempted, through various 

instructional manipulations, to modify subjects' use of a positive test 

strategy and increase subsequent solving efficiency.  The Two-Rule 

manipulation, following a method used earlier by Wetherick (1962), 

involved substituting the titles of "Dax" and Tied" for Wason's traditional 

"Right" or "Wrong" experimenter test-response categories. For example, if 

the rule was "three ascending numbers", the sequence "2, 4, 6" was 

responded to as a "Dax" and the sequence "6, 4, 2" as a Tied". 

The structural change (solving for two rules) significantly increased 

solving efficiency, compared to Tweney et al.'s first three experiments 

which had used several variations in instructions from the Single-Rule 

task to increase disconf irmation. The Tweney et al. results suggested that 

finding two rules allowed the subjects to use a positive test strategy to 

solve the task more efficiently. In the Single-Rule task version, a 

potentially disconfirming datum was often ignored, apparently because it 

was considered a "wrong" answer, while in the Two-Rule version such a 

datum was considered relevant to the Tied" hypothesis.  For example, a 

positive test (e.g. 1, 3,5) of a plausible Tied" hypothesis (e.g. "odd 

numbers") would ultimately disconf irm the corresponding "Dax" hypothesis 
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(e.g. "even numbers") and expand the subjects knowledge base about "Dax" 

sequences. Thus, though a positive test strategy limited the subject's 

knowledge base in the Single-Rule task, in the Two-Rule task it expanded 

the range of possible evidence. Two later studies (Walker & Tweney, 

1983; Walker, 1985) comparing Single and Two-Rule versions of the task 

under various instructional conditions have reported similar though 

somewhat less dramatic results. 

Based in part on the results of tiarkowitz and Mynatt and of Gorman's 

recent findings, it was hypothesized that informing subjects of the 

presence of error in the Single-Rule task version should make subjects' 

hypotheses resistant to change by providing a rationale for ignoring 

disconfirming evidence. Conversely, subjects asked to find two rules 

should not ignore disconf irming evidence, even when informed of the 

presence of error, since a disconfirmatory trial could be incorrectly used 

to modify either or both rules. 

Experiment 8 was designed to compare how informing or not informing 

subjects about the presence of error affects task performance under 

actual error and no error conditions. The 2 X 2 factorial design was based 

on the Experiment 7 methodology but used only the Single-Rule task 

version. 

EXPERIMENT 7 

Method 

Subjects. Ninety Bowling Green State University students (34 freshman, 

21 sophomores, 22 juniors, 7 seniors, and 6 graduate students; 56 

females, 34 males) were recruited for the experiment. They were paid 

$3.50 each for their participation. 
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Procedure. The experiment was designed to compare the standard Wason 

(1960) 2-4-6 task, in which subjects are asked to find one 

number-sequencing rule, to the Tweney et al. (1980) version, in which 

subjects are asked to find two interrelated number-sequencing rules (DAX 

and MED), in each of three feedback conditions. The two main task 

conditions (Single and Two-Rule) were crossed with three test-response 

conditions: (1) No Error, (2) Informed Error—subjects received some 

erroneous feedback and were cautioned in the instructions that error 

might occasionally occur, and (3) Uninformed Error—subjects received 

some erroneous feedback, but were not cautioned that error might occur. 

Fifteen subjects were randomly assigned to each of the following six 

groups: (1) Single-Rule, No Error; (2) Two-Rule, No Error; (3) Single-Rule, 

Informed Error; (4) Two-Rule, Informed Error; (5) Single-Rule, Uninformed 

Error; and (6) Two-Rule, Uninformed Error. 

Before starting an experimental session, the experimenter loaded one 

of six randomly-selected programs, which corresponded to the six 

experimental conditions, into each of four Apple Macintosh computers. All 

programs were designed to compare a three-digit keyboard entry (e.g., 1,3, 

5) to a general number-sequencing rule, three ascending numbers. For the 

four Error conditions (Single and Two-Rule, Informed and Uninformed), the 

programs also included a subroutine which was randomly activated for 

approximately 20* of the data entries. The subroutine reversed the 

computer response to a data entry so that a sequence that actually fit the 

"ascending numbers" rule was responded to as not fitting and vice-versa. 

For the Single and Two-Rule Informed Error conditions, an abbreviated list 

of instructions displayed on the computer monitor contained a warning to 

the subject that not all the computer responses to the number-sequence 
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tests were correct. For the single and two-rule uninformed error 

conditions, the abbreviated lists of instructions were the same as those 

used for the corresponding No Error conditions. 

Upon entering the laboratory, subjects were asked to take a seat at one 

of the four computers. They were instructed to read a sheet of 

instructions concerning the task procedures, which corresponded to the 

One or Two-Rule task, depending on which task had been loaded into the 

computer (pp. 90 and 91). When all subjects had completed reading the 

instructions, the experimenter answered any questions that arose. 

Subjects were asked to write their name, age, class (freshman, 

sophomore, junior, senior, or graduate student), and major field of study.at 

the top of the first record sheet provided next to the computer (see pp. 92 

and 93). Each subject then entered his or her three initials from the 

keyboard as instructed by the display on the monitor screen and pressed 

the "Return" key. For the Single-Rule conditions, the program responded by 

displaying an abbreviated version of the task instructions, which included 

the sequence "2, 4, 6" as an example that fit the rule (see p. 94); by giving 

a highlighted warning about incorrect computer responses for the Informed 

Error condition (see p. 95); and by displaying a prompt "<?>" for the first 

data entry. Before subjects began testing sequences, the experimenter 

reminded them to enter the example, "2,4,6", on the top line of their 

response sheets under the "Number-Sequence Test" category and check the 

box under the "Fits" category. Subjects were then asked to write down any 

ideas they might have about the rule in the second space provided under 

the "Ideas About The Rule" category of the response sheet and to begin 

testing number-sequences. 
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Figure 2-1. 

Sin.jie-Ku.le  Instruction  Sheet 

WELCOriE TO OUR LABORATORY 

"aäy we would like you to play 0 game with the computer. The computer has been programmed to 
?r xjuce an infinite numDer c; three-digit sequences The oDject of the game is for you to find out' 
wnat kind of number-sequencing rule the computer has been programmed to use. To discover the 
computer's rule, you may enter your own three-digit sequences from the keyboard. The computer 
will lellyou tf your sequences fit the rule or not. Based on the outcomes of these tests you should 
be able to find the rule. 
On '.he table next to the computer you will find a record sheet which we would like you to use to 

keep track of your ideas, number-sequence tests, and the computer's responses. Following is a 
'■•\ of the steps you should follow in playing the game. 

5 Type in your initials and press the <RETURN> key. 

2. Read the instructions. 

3. Enter any ideas you may have about what the rule might be and a three-digit 
sequence you would like to test on the record sheet. 

4   Type in the three-digit sequence separating the digits with commas and press 
the <RETURN> key. 

5.  The computer will ask you if you think your three-digit sequence fits the 
actual rule.  Type in "Y" for "YES*, 'N* for "NO-, or "U" for 'Unsure' or 'I don't 
know" and press the <RETURN> key. 

6 The computer will respond to your number-sequence test as either fitting or 
not fitting the rule. Record the computer's response on your record sheet. 

7. Repeat Steps 3-6 until you are very sure you know what the rule fs. When 
you think you know what the rule is. write it across the record sheet with the red 
pen and quietly raise your hand.  The experimenter will tell you if your rule 
guess matches the actual rule. 

8. if your guess was wrong, you may continue repeating Steps 3-6 and make 
another guess. You may repeat this process as many times as you wish. 

If you have any questions while you are playing the game, just raise your hand and the 
experimenter will be glad to help you. 
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Two-Rule   Instruction  Sheet 

WELCOME TO OUR LABORATORY 

Toiay «e would like you to play 3 g^e v/ith the computer. The computer has been programmed 'o 
orcojce two airrerent lists of »-.,-■«-:-;■». sequences Tne ooject of me game is for you to Tina out ' 
what the two number-sequencs.-g .-/es '.ne computer has oeen programmed to use. Todiscover the 
computer's rules, you may enter .y,?L.~ c-,vn three-digit sequences from the keyboard  The 
computer will tell you if your sequences fit the DAX or MED rules. Based en the outcomes of these 
tests you should be able to fine the r^es 
On the table next to the computer VCJ will find a record sheet which we would like you to use to 

*eep track of your idess, number -wcjeice tests, and the computer's responses. Following is a 
•ist ot the steps you should follow ■■-. oiling the game. 

1. Type in your initials and press the <RETURN> key. 

2. Read the instructions. 

3. Enter any ideas you may have about what the rules might be and a three-digit 
sequence you would like to test on the record sheet. 

4. Type In the three-digit sequence separating the digits with commas and press 
the <RETURN> key. 

5. The computer will ask you if you think your three-digit sequence fits the DAX 
rule.  Type in "D" for "DAX", "M" for -MED*, or 'IT for "Unsure" or "I don't 
know" and press the <RETURN> key. 

6. The computer will respond to your number-sequence test as either fitting the 
DAX or M£[) rule, Record the computer's response on your record sheet. 

7. Repeat Steps 3-6 until you are very sure you know what the rules are. When 
you think you know what the rules are, write them across the record sheet with 
the red pen and quietly raise your hand. The experimenter will tell you if your 
rule guesses match the actual rules. 

8. If your guesses were wrong, you may continue repeating Steps 3-6 and make 
another pair of guesses.  You may repeat this process as many times as you. wish. 

i: you have any questions *r, i;e V:L> ir-. laying the game, just raise your hand and the 
experimenter will be g:so to he;p you 
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Figure 2-3. 

Single-Rule Sample Response Sheet 

:IA.
;
 A=■">■. . m r/_i ""••ST" 

I>CESN 



Figure 2-4 

T«ü-Hule  5dri-.ple  Response  Sneet 

93 

IDEAS AEOUT THE RULES 
HUKBEP.-iESUENCE 

TEST D-iJ( K^D 

1 

1               1 
i         i 

—.              .         i 

I         i 

! 

i                 . 
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Figure 2-5. 

Single-Rule Abbreviated Task Instructions (Monitor Display) 

No Error and Uninformed Error Conditions 

HI, I'M MAC, THE COMPUTE*! 
Would you please enter your initials and press <RETURN> 
(suDJect's initials) 
I iiave been programmed to generate an infinite list of 

three-digit sequences.  I use a very general 

numoer-sequencing rule to get the job done.  The object of 

the game we are going to play is for you to discover the 

number-sequencing rule I am using.  I cannot tell you the 

rule, but I can tell you if a three-digit sequence that you 

enter from the keyboard fits my rule or not.  For instance, 

if you were to give me tne sequence—2,4,6 — I would tell you 

tnat it fits my rule.  You may test other three-digit 

sequences Dy entering three numbers separated by commas eacn 

time you see <?> on tne screen.  You may conduct as many 

numcer-sequence tests as you want.  To make it easier for 

you to keep track, of tne number-sequences you have tried and 

my responses you should record tnem on tne sneet next to tne 

Keyboard.  When you are very sure you know wnat the rule is, 

just stop ana write it across your test record sneet with 

the red pen and raise your nand.  The experimenter will tell 

you if your guess is rignt.  If your guess is wrong, you may 

continue to test more number sequences. 

If you have any questions, please ask the experimenter now. 
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Figure 2-6. 

Single-Rule Aboreviateu Tas< Instructions (Monitor Display) 

Informed Error Condition 

HI, I'M MAC, THL" COMPUTER! 
would you please enter your initials ana press <RETURN> 
(subject's initials) 
I have  been program, .eu to generate an infinite list of 

taree-oigit secueiioci.  I use a very general 

nuniDer-sequeuci,., rule to get the joo done.  The object of 

the game we are guir. g to play is for you to discover the 

numuer-sequencing rule I am using.  I cannot tell you the 

rule, but I can teii you if a chree-digit sequence that you 

enter from the r;eyuo,= r--: fits my rule or not.  For instance, 

if you were to give me t:-,e sequence--2, -\, 5--I would tell you 

that it fits my rul_-.  You may test other three-digit 

sequences oy enter:::, three numbers separatea Dy -commas each 

time you see <.-> or.   tn_- ooreen.  You .r.ay  conuuct as many 

aumcer-sequence test.; JS /ou want.  To make it easier for 

you to .<eep trac.% o: tr.e numcer-sequences you nave tried and 

my responses you ir.-jL recoru tr.em on   th =   sneet ne/.c to the 

keyooard.  .-men you are very sure you know what the rule is, 

just stop ana write it =cross your test record sneet with 

tne red pen and rci:^-_- /our hand.  The experimenter will tell 

you if your gue^o :., r.g.-.u.  If your guess is wrong, you may 

continue to test ..ore numoer sequences.  One word of 

CAUTION, once in a .-.•■lie I get mixed up ana I may tell you a 

sequence fits wnen -t uoesn't and vice-versa. 

If'you have any questions, please ask the experimenter now. 
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After each three-digit keyboard entry, the Single-Rule programs 

responded by asking the subject to indicate whether he or she thought the 

test would fit the rule. For instance, if a subject's first hypothesis was 

"Even numbers" and the sequence "8, 10, 12" was entered, the screen 

displayed the question. "Do you think 8, 10, 12 will fit my rule?" The 

subject indicated his or her expectation of the computer response to the 

test by entering T (yes), "No" (no), or "U" (unsure) and pressing <RETURN>. 

The entry of one of the three letters prompted the program to respond to 

the number-sequence test in one of two ways: (1) "That sequence fits my 

rule" or (2) "That sequence does not fit my rule". 

For the Two-Rule conditions, the program responded by displaying an 

abbreviated version of the task instructions, which included the sequence 

"2, 4, 6" as an example that fit the "Dax" rule (see p. 97); by giving a 

highlighted warning about incorrect computer responses for the Informed 

Error condition (see p. 98); and by displaying a prompt "<?>" for the first 

data entry. Before subjects began testing sequences, the experimenter 

reminded them to enter the example, "2, 4, 6", on the top line of their 

response sheets under the "Number-Sequence Test" category and check the 

box under the "DAX" category. Subjects were then asked to write down any 

ideas they might have about the rules in the second space provided under 

the "Ideas About The Rules" category of the response sheet and to begin 

testing number-sequences. 
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Figure 2-7. 

Two-Rule Aubreviated Tasx. Instructions (Monitor Display) 

No Lrror and Uninformed Error Conditions 

dl, I'M MAC, THE COMPUTE«i 
Would you please enter your initials ana press <RETURN> 
(subject's initials) 
I nave Deen programmed to yenerate tv;o aifferent lists of 

cnree-uigit sequences.  1 use two very g-neral 

number-sequencing rules, DAX and MED, to get the job clone. 

The oDJect of the game we are. going to play is for you to 

ciscover the two number-sequencing rules I an using.  I 

cannot tell you the rules, but I can tell you if a 

tnree-digiu sequence that you enter froir. t.ne keyboard' fits 

;..y DAX or NED rule.  For instance, if you were to give ine 

cne sequence —2 , 4 ,o —I would tell you that it fits my DAX 

rale.  You ,;,ay test otner three-digit sequences by entering 

c.-.revs nuiroers separated by commas each time you see <?> on 

tae scree:;.  You may conuuct as many numoer-sequence tests 

äs you want.  To make it easier for you to Keep track of the 

number-sequences you have tried and my responses you should 

record t:ie..i on the sheet next to the keyboard.  When you are 

very sure you know what the rules are, just stop and write 

tnem across your test record sheet with the red pen and 

raise your nund.  The experimenter will tell you if your 

guess is right.  If your guess is wrong, you may continue to 

test more number sequences. 

If you nave any questions, please ask the experimenter now. 
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Figure 2-8. 
Two-Rule Abbreviated Task Instructions (Monitor Display) 

Informed Error Condition 

HI, I'M MAC, THE COMPUTER! 
would you please enter your initials and press <RETURN> 
(subject's initials) 
I nave been programmed to generate two different lists of 

tnree-uigit sequences.  1 use two very general 

nu.noer-sequencing rules, DAX and MED, to get the job done. 

Ine ooject of the game we are going to play is for you to 

discover the two numoer-sequencing rules I am using.  I 

cannot tell you the rules, out I can tell you if a 

three-digit sequence that: you enter from the Keyboard fits 

my DAX or MED rule.  tor instance, if you were to give me 

the sequence—2,4,6 — 1 would tell you that it fits my DAX 

rule.  You may test otner tnree-uigit sequences by entering 

three numbers separated by commas each time you see <?> on 

tne screen.  You may conuuet as many number-sequence tests 

as you want.  To make it easier for you to keep track of tr.e 

number-sequences you nave tried and my responses you should 

record them on the sneet next to the keyboard.  When you are 

very sure you Know wr.at tne rules are, just stop and write 

thern across your test record sheet with the red pen and 

raise your hanu.  :.-.:- jxperimenter will tell you if your 

guess is right.  It /cur guess is wrong, you may continue to 

test more number sequences.  One word of CAUTION, once in a 

while I get mixea up ana may tell you a sequence fits my DAX 

rule when it doesn't and vice-versa. 

If you have any questions, please ask the experimenter now. 
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After each three-digit keyboard entry, the Two-Rule programs 

responded by asking the subject to indicate which rule, DAX or MED, he or 

she thought the test fit. For instance, if a subject's first hypothesis about 

the "DAX" rule was "Even numbers" and the sequence '8, 10, 12" was 

entered, the screen displayed the question: "Do you think 8, 10, 12 will fit 

my DAX or MED rule?" The subject indicated his or her expectation of the 

computer response to the test by entering "D" (Dax), "M" (Med), or "IT 

(unsure) and pressing <RETURN>, which prompted the program to respond to 

the number-sequence test in one of two ways: (1) "That sequence fits my 

DAX rule" or (2) "That sequence fits my MED rule*. 

For all conditions, when a subject was ready to announce a rule or rules, 

as directed by the corresponding set of instructions, he or she wrote the 

rule or rules across the record sheet with a red pen and raised his or her 

hand. The experimenter, in turn, went to the subject's work station and 

indicated whether or not the announcement was correct by writing "Yes" or 

"No" next to the red entry. If the announcement was wrong, the subject 

was allowed to continue testing number-sequences and making 

announcements. Subjects were given 25 minutes to complete the task. 

Results 

Solution Rates 

Solvers. The number of solvers was markedly less in the Informed and 

Uninformed Error conditions, than in the No Error conditions, in both the 

Single and Two-Rule task versions (see Table 2-1). Eleven of 60 subjects 

(18.3ft) across all Error conditions eventually solved the task, compared to 

27 of 30 subjects (90.095) in both No Error conditions. For the Single-Rule 

task, 14 of 15 subjects (93.38) in the No Error condition solved the 
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problem, compared to 8 of 30 (26.7%) in both Error conditions. The 

difference in the number solving the task on their first rule announcement, 

solving eventually but not on the first announcement, or not solving at all 

among the three Single-Rule conditions was significant (%2K N s 45) = 

18.99, p<.001). For the Two-Rule task, 13 of 15 subjects (86.7%) in the No 

Error condition solved the problem, compared to 3 of 30 subjects (10.0%) 

in both Error conditions. The difference in the number solving on their 

first rule announcement, solving eventually but not on the first 

announcement, or not solving at all among the three Two-Rule conditions 

was also significant (x2(4, N = 45) = 26.17, p<001). There was no 

significant difference in solving rates between the Single and Two-Rule, 

No Error conditions((2, N = 30) = 2.81, ns). 

First-Announcement Solvers. The number solving the task in only one 

announcement was also much lower for both the Informed and Uninformed 

Error conditions across both the Single and Two-Rule task versions, 

compared to those in both No Error conditions (see Table 1). 

Collapsing across Error conditions, 7 of 60 subjects (11.7%) solved the 

problem in one rule announcement, compared to 19 of 30 No Error subjects 

(63.3%). For the Single-Rule task, 4 of 30 Error subjects (13.3%) solved 

the problem in one rule announcement, compared to 8 of 15 No Error 

subjects (53.3%). The difference in the number of first-announcement 

solvers compared to eventual and non-solvers among the three Single-Rule 

conditions was significant (%2(2, N ■ 45) - 8.864, p<.025). For the 

Two-Rule task, 3 of 30 Error subjects (10.0%) solved the task in one rule 

announcement, compared to 11 of 15 No Error subjects (73.3%). The 

difference in the number of first-announcement solvers compared to 
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eventual and non-solvers among the three Two-Rule conditions was also 

significant (x2(2, N = 45) = 18.871, p<.001). 

Table 2-1 

Frequencies and Percentages of First-Announcement Solvers, 

Eventual Solvers and Non-solvers 

Single-Rule Task Version (N = 45) 

Ist-Announcement        Eventual Non- 
Solvers Solvers Solvers 

Condition n    (%) n   (%) n   (%) 

No Error 8 (53.3%) 6 (40.0%) 1 (6.7%) 

Informed Error        1 ( 6.7%) 3 (20.0%) 11 (73.3%) 

Uninformed Error   3 (20.0%) 1 ( 6.7%) 11 (73.3%) 

Totals 12(26.7%) 10(22.2%) 23(51.1%) 

Two-Rule Task Version (N = 45) 

No Error 11(73.3%) 2(13.3%) 2(13.3%) 

Informed Error 2(13.3%) 0(00.0%) 13(86.7%) 

Uninformed Error 1(6.7%) 0(00.0%) 14(93.3%) 

Totals 14(31.1%) 2(4.4%) 29(64.4%)j 

Number-Sequence Tests. Frequencies. A two-way analysis of variance 

(task version x condition) indicated a significant difference in the mean 
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numbers of number-sequence tests subjects conducted among the No Error, 

Informed Error, and Uninformed Error conditions (F (2, 84) * 12.425, 

p<.001), but not between Single and Two-Rule task versions (F (1,84) - 

2.527, NS). No significant interaction between task version and condition 

was found. (See Table 2-2.) Subjects in the Error conditions conducted 

approximately twice as many number-sequence tests as No Error subjects. 

Across the four Error conditions, Error subjects conducted an average of 

30.23 tests, while No Error subjects conducted an average of 16.15 tests. 

In the Single-Rule Informed and Uninformed Error conditions, subjects 

conducted an average of 29 tests, while Single-Rule No Error subjects 

conducted an average of 12.2 tests. In the Two-Rule Informed and 

Uninformed Error conditions, subjects conducted an average of 33.3 tests, 

while Two-Rule No Error subjects conducted an average of 20.1 tests. 

Table 2-2 

Mean Numbers of Tests Conducted. 

Task Version 

Single-Rule Two-Rule 

Condition                   Mean * Mean * 

No Error                      12.2 20.1 

Informed Error             28.7 34.5 

Uninformed Error         29.3 28.4 

Column Mean                23.4 27.7 
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Test Result Expectations. Comparisons of subjects' expected test result 

responses revealed significant differences between the Single and 

Two-Rule task versions for the percentages of total trials of "Yes" or 

"Dax" responses and "No" or "Med" responses. (See Table 2-3). 

Table 2-3 

Subjects' Expected Test Results. 

Single-Rule Task Version 

Expect "Yes" 

Condition       Mean *   (95) 

No Error 7.73 (63.4) 

Informed Err      18.47 (64.4) 

Uninformed Err  16.20 (55.2) 

Column Means    14.13 (61.0) 

Expect"No" 

Mean* (%) 

2.47 (20.2) 

6.27 (21.9) 

6.20 (21.1) 

4.98 (21.1) 

Two-Rule Task Version 

No Error 

Expect"Dax" 

7.27 (36.1) 

Informed Err      11.93 (34.6) 

Uninformed Err   11.93 (42.0) 

Column Means    10.38 (37.6) 

Expect "Med" 

9.00 (44.7) 

11.80 (34.2) 

13.00 (45.8) 

11.27 (41.5) 

"Unsure" 

Mean* (%) 

2.00 (16.4) 

3.93 (13.7) 

6.93 (23.6) 

4.29 (17.9) 

"Unsure" 

3.87 (19.2) 

10.80 (31.2) 

3.47 (12.2) 

6.05 (20.9) 

Note—Percentages computed as the percent of total trials. 

A two-way analysis of variance (task version x condition) indicated 
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A two-way analysis of variance (task version x condition) indicated 

that the percentage of "Yes" or "Dax" responses was significantly different 

between the Single and Two-Rule task versions (F( 1, 84) - 28.832, p<.001), 

but not among the No Error, Informed Error, and Uninformed Error 

conditions (F(2, 84) - 1.141, NS). No significant interaction effect was 

found. For the Single-Rule task version collapsing across conditions, 

subjects expected an average of 61.0% of the sequences tested to fit the 

experimenter's rule, while subjects in the Two-Rule version expected an 

average of 37.692 of the sequences to fit the analogous "Dax" rule. 

The percentage of "No" or "Med" responses was also significantly 

different between the Single and Two-Rule task versions (F( 1, 84) - 

41.486, p<.001), but not among the No Error, Informed Error, and 

Uninformed Error conditions (F(2, 84) - 1.089, NS). For the Single-Rule 

task version across all conditions, subjects expected an average of 21.1% 

of the sequences not to fit the experimenter's rule, while subjects in the 

Two-Rule version expected an average of 41.5% of the sequences tested to 

fit the "Med" rule. 

The percentage of "Unsure" responses was not significantly different 

between task versions, (F( 1,84) -. 113, NS) or among the No Error, 

Informed Error, and Uninformed Error conditions (F (2, 84)«.783, NS). 

Across task versions, 17.9% of the Uninformed Error subjects' responses 

were "Unsure", compared to 17.8% of the No Error and 22.5% of the 

Informed Error subjects' responses. 

Confirmation and Disconfirmation 

Trial Outcome Categorization. For all conditions the outcome of each 

non-error trial was categorized as confirmatory, disconfirmatory, or 
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unclassifiable by comparing the subject's expected test result response 

("Yes" or "Dax", "No" or Tied", or "Unsure") to the computer response to the 

test. A trial outcome was categorized as confirmatory if the expected 

test result response matched the computer response, disconf irmatory if 

the expected test result response did not match the computer response, 

and unclassifiable if the expected test result response was "Unsure" (see 

Table 2-4). 

For the four Error conditions, the type of error trial (falsepositive or 

false negative in relation to the "ascending" rule) was also compared to 

the subject's expected test result response ("Yes" or "Dax", "No" or "Med", 

or "Unsure") to differentiate between spuriously confirmatory and 

spuriously disconf irmatory trial outcomes. An error trial outcome was 

categorized as spuriously confirmatory when the expected test result 

response matched the erroneous feedback or as spuriously disconf irmatory 

when the expected test result response did not match the erroneous 

feedback (see Table 2-4). 

Comparisons. The percentages of total trial outcomes categorized as 

confirmatory (including spuriously confirmatory trials) were compared 

between the Single and Two-Rule task versions and across the No error, 

Informed Error, and Uninformed Error conditions. (See Table 2-5.) A 

two-way analysis of variance (task version x condition) indicated 

significant differences in the percentages of confirmatory trials between 

task versions (F( I, 84) ■ 9.950, p< 01) and among the three conditions (F 

(2, 84) - 6.845, p<.01). Of the total trial outcomes, 48.895 were 

confirmatory for the Single-Rule subjects, compared to 44.9% for the 

Two-Rule subjects. For No Error subjects, 56.5» of the total trial 

outcomes were confirmatory, compared to 40.1 % for Informed Error 
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Criteria for Classification of Trial Outcomes 

Single-Rule Task Version 

Trial Classification Test Expect Result 

Confirmatory 1,2,3 "Yes" "Yes" 

Confirmatory 2.2,2 "No" "No" 

Disconfirmatory 
Disconfirmatory 

1,2,3 
2,2,2 

"No" 
"Yes" 

"Yes" 
"No* 

Spuriously Confirmatory 
Spuriously Confirmatory 

2,2,2 
1,2,3 

"Yes" 
"No" 

"Yes" 
"No" 

Spuriously Disconfirmatory 
Spuriously Disconfirmatory 

2,2,2 
1,2,3 

"No" 
"Yes" 

"Yes" 
"No" 

Two-Rul le Task Version 

Confirmatory 
Confirmatory 

1,2,3 
2,2,2 

"Dax" 
"Med" 

"Dax" 
"Med" 

Disconfirmatory 
Disconfirmatory 

1,2,3 
2,2,2 

"Med" 
"Dax" 

"Dax" 
"Med" 

Spuriously Confirmatory 
Spuriously Confirmatory 

2.2,2 
1,2,3 

"Dax" 
"Med" 

"Dax" 
"Med" 

Spuriously Disconfirmatory 
Spuriously Disconfirmatory 

2,2,2 
1,2,3 

"Med" 
"Dax" 

"Dax" 
"Med" 

subjects and 4Q.4% for Uninformed Error subjects.  Post hoc pairwise 

comparisons of the differences between the means of the three conditions 

usingTukey's HSD test (p<01) indicated the significant difference in the 

percentage of confirmatory trial outcomes was primarily between the No 

Error and Informed Error conditions. 
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Similarly, the percentages of disconfirmatory trial outcomes 

(including spuriously disconfirmatory trial outcomes) were compared 

using a two-way analysis of variance (task version x condition). 

Significant differences in the percentages of disconfirmatory trial 

outcomes were indicated between task versions (F (1, 84) - 5.416, p<.025) 

and among the No Error, Informed Error, and Uninformed Error conditions (F 

(2, 84) = 15.154, p<.001). Of the total trial outcomes, 32.9% were * 

disconfirmatory for the Single-Rule subjects, compared to 33.3% for the 

Two-Rule subjects. For No Error subjects, 25.4% of the total trial 

outcomes were disconfirmatory, compared to 36.6% for Informed Error 

subjects and 33.6% for Uninformed Error subjects.   Post hoc pairwise 

comparisons of the differences between the means of the three conditions 

using Tukey's HSD test (p< 01) indicated significant differences in the 

percentage of disconfirmatory trial outcomes between the No Error and 

Informed Error, as well as between the No Error and Uninformed Error 

conditions.  A significant interaction effect (task version x condition) (F 

(2, 84) = 8.463, p<001) for the percentages of disconfirmatory trial 

outcomes was also found.   As shown in Table 2-5, the highest percentage 

of disconfirmatory trial outcomes (41.6%) for the Single-Rule subjects 

occurred in the Informed Error condition, while the highest percentage of 

disconfirmatory trial outcomes (38.5%) for the Two-Rule subjects 

occurred in the Uninformed Error condition. 

Spurious Confirmation and Disconfirmation. In the Single-Rule, 

Informed Error condition, 32.0% of all error trial outcomes were 

categorized as spuriously confirmatory and 60.2% as spuriously 

disconfirmatory. In the Single-Rule, Uninformed Error condition, 21.9% of 

all error trial outcomes were categorized as spuriously confirmatory and 
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54.3% as spuriously disconf irmatory. 

In the Two-Rule, Informed Error condition, 28.6% of all error trial 

outcomes were categorized as spuriously confirmatory and 345% as 

spur iously disconf irmatory. In the Two-Rule, Uninformed Error condition, 

42.4% of all error trial outcomes were categorized as spuriously 

confirmatory and 48.5% as spuriously disconf irmatory. 

Table 2-5 

Percentages of Total Tests of Confirmation and Disconfirmation (%'s 

of Spurious Trials in Parentheses) 

Single-Rule Task Version 

Confirmation    Disconfirmation 

Condition Total (Spurious) Total (Spurious) 

No Error 61.7%     NA 21.9%      NA 

Informed Err      44.6% (7.7%) 41.6%  (14.4%) 

Uninformed Err 47.5% ( 5.2%) 28.9%  (12.6%) 

Two-Rule Task Version 

No Error 53.3%     NA 27.5%     NA 

Informed Err      36.3%   (6.6%) 32.4%  (7.9%) 

Uninformed Err 49.3%  (9.9%)       38.5%  (11.3%) 

Test Repetitions 

Within each individual test protocol, a test was classified as a 

repetition if it duplicated a previous test. The number of subjects 
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repeating number-sequence tests was higher in the Error conditions, in 

contrast to the number of subjects in the No Error conditions (see Table 

2-6). Across the Single and Two-Rule task versions, 41 of 60 Error 

subjects (68.3%) repeated tests, compared to 11 of 30 No Error subjects 

(36.7ft). In the Single-Rule task version, 22 of 30 Error subjects (73.3ft) 

repeated tests, compared to 3 of 15 No Error subjects (20.0ft). The 

difference in the number of subjects repeating tests among the 

Single-Rule No Error, Informed Error, and Uninformed Error conditions was 

significant ( (2, N.- 45) - 11.52, p<01). In the Two-Rule task version, 19 

of 30 Error subjects (63.3ft) repeated number-sequence tests, compared to 

8 of 15 No Error subjects (53.3ft). However, the difference in the number 

of subjects repeating tests among the Two-Rule No Error, Informed Error, 

and Uninformed Error conditions was not significant ((2, N - 45) - 0.556, 

N5). 

Table 2-6 

Number of Subjects Repeating Tests (ft's of Subjects/Condition in 

Parentheses) 

Task Version 

Single-Rule Two-Rule 
(N - 45) (N - 45) 

Condition n  (ft) n  (ft) 

No Error 3 (20.0ft) 8 (53.3ft) 

Informed Error 11 (73.3ft) 10 (66.7ft) 

Uninformed Error 11 (73.3ft) 9 (60.0ft) 
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Among all Single-Rule conditions, the mean number of repeated tests 

was 5.2 (12.3 percent of the total tests conducted). (See Table 2-7). 

Since the variances for the three Single-Rule samples, as well as the 

Two-Rule samples, were extremely unequal, thus violating the assumption 

of homogeneity of variance for basic ANOVA, the differences were 

analyzed using the Kruskal-Wallis H test. The difference in the mean 

numbers of repeated tests among the Single-Rule conditions was not 

significant (H (2, N = 25) -1.786, p-409, NS). Among all Two-Rule 

conditions, the mean number of repeated tests was 9.5 (20.9 percent of the 

total tests conducted). The difference in the mean numbers of repeated 

tests among the Two-Rule conditions was also not significant (H (2, N - 

27) = 4676, p=. 097, NS). 

Table 2-7 

Mean Numbers of Repeated Tests («'s of Total Tests in Parentheses) 

Task Version 

Single-Rule Two-Rule 

Condition Mean*  («) Mean*  («) 

No Error 2.3 (3.8«) 2.0 (5.3«) 

Informed Error 5.4(13.7«)        16.3(32.85?) 

Uninformed Error     5.5 (13.9«) 8.6 (18.1«) 

Mean Totals 5.1 (12.1«) 9.5 (20.9«) 

The type of repeated test (confirmatory or disconfirmatory) was 

based on the outcome of the trial being repeated. Across all Single-Rule 
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conditions, 17 of 25 subjects (68.08) repeating tests repeated both 

confirmatory (34.695 of all repetitions) and disconfirmatory (42.58 of all 

repetitions) outcomes. Across all Two-Rule conditions, 16 of 27 subjects 

(59.38) repeating trials repeated both confirmatory (31.38 of all 

repetitions) and disconfirmatory (36.48 of all repetitions) outcomes (See 

Table 2-8). 

Table 2-8 

Number of Subjects Repeating Confirmatory, Disconfirmatory, or Both 

Types of Tests (8's of Subjects/Condition in Parentheses) 

Single-Rule Task Version (N ■ 45) 

Types of Repeated Tests 

Confirmatory Disconfirmatory          Both 

Condition             n    (8) n   (8)                  n    (8) 

No Error               0 (0.08) 0 (0.08) 

Informed Error      1 (9.18) 3 ( 27.28) 

Uninformed Error 1 (9.18) 3(27.28) 

Column Totals     2 (8.08) 6 (24.08) 

Two-Rule Task Version (N ■ 45) 

No Error              6(75.08) 1(12.58) 

Informed Error   2 ( 20.08) 1 (10.08) 

Uninformed Err   1(11.18) 0(00.08) 

Column Totals    9 (33.38) 2 (7.48) 

3(100.08) 

7 (63.78) 

7 (63.78) 

17(68.08) 

1 (12.58) 

7 (70.08) 

8 (88.98) 

16(59.38) 
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Discussion 

Compared to the No Error conditions for both the Single and Two-Rule 

task versions, the significantly higher number of tests and decreased 

solving rates for the Informed and Uninformed Error conditions indicated 

that data error seriously disrupted task performance. The findings support 

Markowitz and Mynatt's (1982) results in which it was reported that 

feedback error disrupted solving efficiency. It should also be noted that 

the percentage (73.392) of first-time solvers for the Two-Rule, No Error 

condition was higher than Tweney et al.'s (1980) findings, in which 56.895 

of the Two-Rule subjects solved on their first announcement. Similarly, 

the percentage (53.39?) of first-time solvers for the Single-Rule, No Error 

condition was higher than Wason's (1966) original findings, in which only 

20.792 of the subjects solved on their first rule announcement. The 

difference in solution rates between the current and earlier studies might 

be partially attributable to automation of the task, which, by limiting the 

amount of experimenter/subject interaction, allowed a more efficient 

means of testing sequences and receiving results than the usual paper and 

pencil method of task administration. 

The primary purpose of Experiment 7, however, was not to 

demonstrate whether or not error disrupted task performance, but how 

informing or not informing subjects about error would affect 

hypothesis-testing heuristics. According to Tweney and Doherty (1983), 

"error-free and error-prone data (should) elicit different hypothesis 

testing strategies" (p. 153), such as conducting more potentially 

confirmatory tests, ignoring disconfirmatory results, and selectively 

repeating more disconf irmatory tests. The results of the Kern (1982) and 
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Gorman (1986) studies using other tasks had also indicated that 

disconf irmatory results were frequently ignored and/or replicated when 

the possibility of error was introduced. The results of Experiment 7 

demonstrated that Single and Two-Rule Error subjects conducted more 

tests overall and were more likely to repeat tests than No Error subjects. 

However, no significant differences were found in the percentages of 

subjects" expectations ("Yes", "No", "Unsure") regarding test results 

between the Single-Rule Informed and Uninformed Error conditions, as 

well as between the Single-Rule No Error and Error conditions (see Table 

2-3). Subjects in all three Single-Rule conditions expected approximately 

three times as many tests to fit the experimenter's rule as not fit. 

Similarly, the percentages of Two-Rule subjects' expectations ("Dax", 

Tied", "Unsure") between Informed and Uninformed Error conditions, as 

well as between No Error and Error conditions were not significantly 

different. In contrast to the Single-Rule subjects, Two-Rule subjects 

expected similar percentages of tests to fit both "Dax" and Tied". 

Though it was expected that Informed Error subjects would be more 

suspicious of the data and more likely to repeat tests than Uninformed 

Error subjects, Single-Rule subjects in both the Informed and Uninformed 

Error conditions were equally likely to repeat number-sequence tests. In 

each of the Single-Rule Error conditions, 73.3X of the subjects repeated 

tests, compared to only 20.08 of the No Error subjects. Interestingly, the 

percentage of subjects (53.3%) in the Two-Rule, No Error condition 

repeating tests was very similar to the percentage of repeaters (63.3%) in 

both Two-Rule Error conditions. Whether or not subjects repeated tests 

appeared to be more closely related to when disconf irmation occurred and 

to the proportionate balance between confirmation and disconf irmation. 
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Though both Single-Rule No Error and Error subjects expected similar 

proportions of tests to fit and not fit the experimenter's rule, the tests 

conducted by Error subjects resulted in a lower proportion of confirmatory 

to disconf irmatory trial outcomes than tests conducted by the No Error 

subjects. Single-Rule, No Error subjects obtained approximately three 

times as much confirmation as disconfirmation from their tests, while 

Informed Error subjects obtained an approximately equal proportion of 

confirmation and disconfirmation, and Uninformed Error subjects obtained 

less than twice as much confirmation as disconfirmation. Also, for most 

Single-Rule No Error subjects, the majority of confirmatory trial 

outcomes was obtained early in the testing process with disconfirmation 

coming later, after a hypothesis had been well-established. However, for 

17 of 30 (56.7%) Single-Rule Error subjects, their first hypothesis was 

spuriously disconfirmed within the first five trials. Such early spurious 

disconfirmation, before a hypothesis could be well-confirmed, may have 

confused Single-Rule Informed and Uninformed Error subjects. As Klayman 

and Ha (1987) have suggested, confirmatory heuristics, such as a positive 

test strategy, are especially powerful in task situations in which the 

validity of feedback is questionable, but in the present task subjects who 

attempted to confirm or establish ideas by using a positive test strategy 

were quickly misled. 

As noted earlier for the Two-Rule task the proportions of tests 

expected to fit and not fit the experimenter's rules were similar among 

the Two-Rule No Error and Error conditions with subjects' test result 

expectations divided almost equally between both rules. The difference 

between the two task versions in subjects' test expectations 

demonstrated how finding two rules, rather than one, differentially 



affects the task structure. The proportions of confirmatory and 

disconfirmatory trial outcomes, unlike the Single-Rule conditions, were 

also very similar among the No Error and Error conditions, as were the 

percentages of subjects repeating tests. Thus Two-Rule subjects in all 

three conditions, as did Single-Rule Error subjects, received less 

confirmation in relation to disconfirmation and were more likely to repeat 

tests than Single-Rule No Error subjects. 

The lack of differences in subjects' expectations about test results 

within each task version indicated that neither informing subjects about 

error nor actual error affected subjects' basic test strategies. However, 

the presence of error so severely disrupted task performance that the lack 

of differences between the Informed and Uninformed Error conditions may 

have been due to a "floor effect". Therefore, Experiment 2 was designed to 

differentiate between the psychological effects of informing subjects 

about error and actual error on hypothesis-testing heuristics using only 

the single rule condition. 

EXPERIMENT 8 

Method 

Subjects- Eighty Bowling Green State University introductory 

psychology students (54 freshmen, 24 sophomores, and 2 juniors; 58 

females, 22 males) were recruited for the study. They were paid $5.00 

each for their participation. 

Procedure. The experiment utilized a 2 x 2 factorial design in which 

system failure (Error) vs. no system failure (No Error) feedback conditions 

were crossed with error warning (Informed) vs. no error warning 

(Uninformed) instructions. Twenty subjects were randomly assigned to 
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each of the following separate groups: (1) No Error; (2) Informed No Error; 

(3) Informed Error and (4) Uninformed Error. 

Before starting an experimental session, the experimenter loaded one 

of four randomly selected programs into each of four Apple Macintosh 

computers. The programs were duplicates of the programs used for the 

Experiment 7 Single-Rule No Error and Error conditions. The Experiment 7 

laboratory procedure was followed, including the use of the Single-Rule 

Instruction and Response sheets (see pp. 90 and 92). For the two Informed 

conditions (Error and No Error), the warning to the subject that not all the 

computer responses to the number-sequence tests were correct was 

enhanced by capitalizing the entire sentence (see p.117). As in Experiment 

7, for the two Uninformed conditions (Error and No Error), the abbreviated 

list of instructions did not contain an error warning (See p.94).   All 

subjects were again given 25 minutes to complete the task. At the end of 

the experimental session, the experimenter gave the correct solution, 

explained the purpose of the experiment, paid the subjects, and distributed 

debriefing forms. 

Results 

Solution Rates 

Solvers. As in Experiment 7, the number of solvers was considerably 

lower for both the Informed and Uninformed Error conditions, compared to 

the No Error and Informed No Error conditions (see Table 2-9). Only 5 of 

40 subjects (125%) in both the Informed and Uninformed Error conditions 

were able to solve the task, compared to 35 of 40 No Error and Informed No 

Error subjects (87.5ft). The differences in the number of subjects solving 

the task on their first rule announcement, eventually, or not at all among 

the four conditions were significant (x2(6, N = 80) = 56.633, p<.00l). 
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Figure 2-9. 

Abbreviated Task Instructions (Monitor Display) 

Informed No Error and Informed Error Conditions 

HI, I'M MAC, THE COMPUTER! 
Wo-.jld you please enter your initials and press <RETURN> 
(subject's initials) 
I have been programmed to generate an infinite list of 

three-digit sequences.  I use a very general 

number-sequencing rule to get the job done.  The object of 

the game we are going to play.is for you to discover the 

number-sequencing rule I am using.  I cannot tell you the 

rule, but I can tell you if a three-digit sequence that you 

enter from the keyboard fits my rule or not.  For instance, 

if you were to give me the sequence, 2,4,6, I would tell you 

that it fits my rule.  You may test other three-digit 

sequences by entering three numbers separated by commas each 

time you see <?> on tne screen.  You may conduct as many 

number-sequence tests as you want.  To make it easier for 

you to keep track of tne number-sequences you have tried and 

my responses you should record them on the sheet next to the 

Keyboard,  i-vhen you are very sure you know what the rule is, 

just stop and write it across your test record sheet with 

the red pen and raise your hand.  The experimenter will tell 

you if your guess is right.  If your guess is wrong, you may 

continue to test more number sequences. 

ONE WORD-OF CAUTION, ONCE IN A WHILE I GET MIXED UP AND I 

MAY TELL YOU A SEQUENCE FITS WHEN IT DOESN'T AND VICE-VERSA. 

If you have any questions, please ask the experimenter now. 
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Solution rates (first-announcement solvers, eventual solvers, and 

non-solvers) between Informed conditions, No Error and Error, also 

differed significantly (%2(2, N = 40) -12.241, p<.00. However, the 

differences in solution rates did not differ between the Informed and 

Uninformed Error conditions (%2(2, N = 40) * 5.714, NS) or between the No 

Error and Informed No Error conditions (x*(2, N - 40) - 6.739, NS). 

First-Announcement Solvers The number of first announcement solvers 

was much lower in the Informed and Uninformed Error conditions than in 

the No Error and Informed No Error conditions (see Table 2-9).  Across 

Informed and Uninformed Error conditions, 3 of 40 subjects (7.5%) solved 

the problem in one rule announcement, compared to 24 of 40 No Error and 

Informed No Error subjects (60.0%). The difference in the number of 

first-announcement solvers compared to eventual and non-solvers among 

the four conditions was significant (x2(3, N ■ 80) = 32.816, p<.001). 

Table 2-9 

Frequencies and Percentages of First-Announcement Solvers, Eventual 

Solvers and Non-solvers (N ■ 80) 

First-Announcement Eventual Non-solvers 

Condition n  (%) n (%) n   (%) 

No Error 16 (80.0%) 3 (15.0%) I (5.0%) 

Informed No Error      8(40.0%) 8(40.0%) 4(20.0%) 

Informed Error 3(15.0%) 2(10.0%) 15(75.0%) 

Uninformed Error      0 (00.0%) 0 (00.0%) 20 (100.0%) 
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Number-Seouence Tests 

Frequencies. The mean numbers of number-sequence tests conducted by 

subjects differed significantly among the four conditions (F(3, 76) - 

19.89, p<.001) (See Table 2-10). Subjects in the Error conditions 

conducted more tests than No Error and Informed No Error subjects. 

Informed and Uninformed Error subjects conducted an average of 28.95 

tests, while No Error and Informed No Error subjects averaged 14.6 tests. 

Table 2- 10 

Mean Numbers of Tests Conducted 

Condition Mean * 

No Error 1450 

Informed No Error 1470 

Informed Error 28.85 

Uninformed Error 29.05 

Mean 21.78 

Test Result Expectations. An ANOVA among the four conditions indicated 

no difference in the percentages of total trials of "Yes" responses to the 

"Expected Test Result" category (F(3, 76) - .234, NS). (See Table 2-11.) 

Across the No Error and Informed No Error conditions, subjects responded 

that they expected 51.25% of the total trials to fit the rule, compared to 

58.7% of the total trials attempted by Informed and Uninformed Error 

subjects. The percentages of "No" responses among the four conditions 
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were also not significantly different (F (3, 76) - .757, NS). Across the No 

Error and Informed No Error conditions, subjects responded that they did 

not expect 20.2ft of the total trials to fit the rule, compared to 17.2% of 

the total trials attempted by Informed and Uninformed Error subjects. 

Similarly, the percentages of "Unsure" responses among the conditions did 

not differ among the four conditions (F(3, 76)- .619, NS). Across the No 

Error and Informed No Error conditions, subjects responded that they were 

unsure about 27.072 of the test results, compared to 25.3% of the total 

trials attempted by Informed and Uninformed Error subjects. 

Table 2-II 

Subjects' Expected Test Results 

Expected "Yes" Expected "No" "Unsure" 

Condition Mean* (95) Mean* (%) Mean* (%) 

No Error 7.90 (545%) 3.15 (21.7%) 3.45 (23.8%) 

Informed No Error     7.05 (48.0%) 2.30 (15.6%) 5.35 (36.4%) 

Informed Error 17.30 (60.0%) 5.65 (19.6%) 5.90 (20.4%) 

Uninformed Error 16.65(57.3%) 450(15.5%) 7.90(27.2%) 

Mean Totals 12.23(56.1%) 3.90(17.9%) 5.65(26.0%) 

Confirmation and Disconfirmation 

Trial Outcome Categorization. As in Experiment 7, for all conditions the 

outcome of each non-error trial was categorized as confirmatory, 

disconf irmatory, or unclassif iable by comparing the subject's expected 

test result response ("Yes", "No", or "Unsure"). A trial outcome was 
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categorized as confirmatory if the expected test result response matched 

the computer response, disconfirmatory if the expected test result 

response did not match the computer response, and unclassif table if the 

expected test result response was "Unsure". (See Table 2-4, p. 106.) For 

the two Error conditions, the type of error trial (false positive or false 

negative in relation to the "ascending" rule) was also compared to the 

subject's expected test result response ("Yes", "No", or "Unsure") to 

differentiate between spuriously confirmatory and spuriously 

disconfirmatory trial outcomes. The outcome of an error trial was 

categorized as spuriously confirmatory when the expected test result 

response matched the erroneous feedback or as spuriously disconfirmatory 

when the expected test result response did not match the erroneous 

feedback (see Table 2-4). 

The percentages of total test outcomes categorized as confirmatory 

(Including spuriously confirmatory trial outcomes) were compared across 

the four conditions. (See Table 2-12.) An analysis of variance indicated 

no significant difference in the percentages of confirmatory trials among 

the No Error, Informed No Error, Informed Error, and Uninformed Error 

conditions (F(3, 76) - 1.194, NS). Of the total test outcomes, 54.3% were 

confirmatory for No Error and Informed No Error subjects and 47.08 were 

confirmatory for Informed and Uninformed Error subjects. 

A second analysis of variance indicated a significant difference in the 

percentages of disconfirmatory trial outcomes among the four conditions 

(F(3, 76) - 9.983, p<.001). For No Error and Informed No Error subjects, 

15.68 of the total test outcomes were disconfirmatory, compared to 29.2X 

for Informed and Uninformed Error subjects. Post hoc pairwise 

comparisons of the differences between the means of the four conditions 
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using Tukey's HSD test (p<01) indicated significant differences in the 

percentage of disconf irmatory trial outcomes between the Informed No 

Error condition and the Informed and Uninformed Error conditions. 

Table 2-12 

Percentages of Total Tests of Confirmation and Disconfirmation (%'s of 

Spurious Trials In Parentheses) 

Confirmation Disconfirmatton 

Condition Total (Spurious) Total (Spurious) 

No Error 55.9%    NA 20.3%    NA 

Informed No Error   52.7%    NA 10.9%    NA 

Informed Error       49.1%  (5.5%) 30.5%  (146%) 

Uninformed Error   44.8%  (7.2%) 27.9%  (12.6%) 

Spurious Confirmation and Disconfirmation. In the Informed Error 

condition, 22.4% of all error trial outcomes were categorized as 

spuriously confirmatory, 58.7% as spuriously disconfirmatory. In the 

Uninformed Error condition, 29.0% of all error trial outcomes were 

spuriously confirmatory and 50.3% as spuriously disconfirmatory. 

Test Repetitions. The difference in the number of subjects repeating tests 

among the No Error, Informed No Error, Informed Error and Uninformed 

Error conditions was significant (x2(3, N * 80) ■ 29.039, p<.005). (See 

Table 2-13.) The number of subjects repeating tests was higher In the 

Informed and Uninformed Error Conditions than in the No Error and 

Informed No Error conditions. Across Informed and Uninformed Error 
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conditions, 28 of 40 subjects (70.095) repeated trials, compared to 7 of 40 

No Error and Informed No Error subjects (17.5%). 

Table 2-13 

Number of Subjects Repeating Tests (%'s of Subjects/Condition in 

Parentheses,N - 80) 

Repeating Not Repeating 

Condition n  (%) n  (%) 

No Error 4 (20.0%) 16(80.0%) 

Informed No Error 3(15.0%) 17(85.0%) 

Informed Error 16(80.0%) 4 (20.0%) 

Uninformed Error 12(60.0%) 8 (40.0%) 

Column Totals 35 (43.8%) 45 (56.2%) 

Among the four conditions, the mean number of repeated tests was 2.6 

(12.1% of the total tests conducted). (See Table 2-14.) As in Experiment 

7, the variances for the samples were extremely unequal and the 

differences between the means were analyzed using the Kruskal-Wallis H 

test. The difference in the mean numbers of repeated tests among the four 

conditions was not significant (H (3, N ■ 37) - 7.09, p».069, NS). The type 

of repeated test (confirmatory or disconfirmatory) was based on the 

outcome of the trial being repeated. Across all conditions, 17 of 35 

subjects (48.6%) repeating tests, repeated both confirmatory (36.4% of all 

repeated tests) and disconf irmatory (43.5% of all repeated tests) test 
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outcomes, 8 (22.9%) repeated only confirmatory test outcomes, and 10 

(28.6%) repeated only disconf irmatory test outcomes. (See Table 2-15.) 

Table 2-14 

Mean Numbers of Repeated Tests (%'s of Total Tests In Parentheses) 

Condition 

No Error 

Informed No Error 

Informed Error 

Uninformed Error 

Mean Totals 

Mean * (%) 

1.3   ( 1.7%) 

1.3   ( 1.4%) 

5.8    (20.1%) 

43    (14.8%) 

3.2    (9.5%) 

Table 2-15 

Number of Subjects Repeating Confirmatory, Disconfirmatory, or Both 

Types of Tests (%'s of Subjects Repeating in Parentheses, N - 80) 

Type of Repeated Tests 

Confirmatory      Disconfirmatory Both 

Condition n (%) n    (%) n    (%) 

No Error 3 (75.0%) 1 (25.0%) 0 (0.0%) 

Informed No Error 2 (66.7%) 1 (33.3%) 0 (0.0%) 

Informed Error 3 (18.8%) 4 (25.0%) 9 (56.2%) 

Uninformed Error 0 ( 0.0%) 4 (33.3%) 8 (66.7%) 

Column Totals 8 (22.9%) 10(28.6%) 17 (48.5%) 
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Discussion 

Subjects in both Informed and Uninformed Error conditions, as in the 

Single-Rule task version of Experiment 7, used a significantly higher 

number of tests and had substantially decreased solving rates compared to 

subjects in the No Error and Informed No Error conditions. The results 

again indicated that data error seriously disrupts task performance. The 

percentage (80.0%) of first-time solvers for the No Error condition was 

again higher than Wason's (1960) original findings, as well as higher than 

the percentage (53.3%) of first-time solvers reported in Experiment 7. 

The total percentage (95.0%) of both first-time and eventual solvers for 

the No Error condition was very similar to the total percentage (93.4%) 

reported for the Single-Rule No Error condition in Experiment 7. As shown 

in Table 2-16, the Experiment 8 findings for the No Error, Informed Error, 

and Uninformed Error conditions not only replicated the Experiment 7 

Single-Rule task version findings for solution rates, but also the mean 

number of trials, and the mean numbers and percentages of subjects' 

expected test result responses. Furthermore, the number of subjects 

repeating tests, as well as the mean number of repeated tests, as found in 

Experiment 7 were replicated in Experiment 8. 
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Table 2-16 

Comparison of Experiment 7 and Experiment 8 Findings 

Solution Rates 

First Eventual Non- 
Solvers Solvers Solvers 

Condition n     (%) n    (%) n    (%) 

No Error (7) 8   (53.3%) 6  (40.0%) 1 (6.7%) 

No Error (8) 16   (80.0%) 3   (15.0%) 1 (5.0%) 

Informed Err (7) 1   ( 6.7%) 3   (20.0%) 11 (73.3%) 

Informed Err (8) 3   (15.0%) 2   (10.0%) 15 (75.0%) 

Uninformed Err (7) 3 (20.0%) 1  (6.7%) 11 (73.3%) 

Uninformed Err (8) 0 (00.0%) 0 (00.0%) 20 (100.0%) 

Mean Numbers of Tests Conducted 

Experiment 7 Experiment 8 
Condition Mean No. Mean No. 

No Error 12.2 145 

Informed Error 28.7 28.9 

Uninformed Error 29.3 29.1 
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Table 2-16 cont. 

Subjects' Expected Test Results 

Expect "Yes" Expect"No" "Unsure" 
Condition Mean* (%) Mean* (%) Mean* (%) 

No Error (7) 7.73 (63.4) 2.47 (20.2) 2.00(16.4) 

No Error (8) 7.90 (545) 3.15(21.7) 3.45 (23.8) 

Informed Err (7) 18.47(644) 6.27(21.9) 3.93(13.7) 

Informed Err (8) 17.30(60.0) 5.65(19.6) 5.90 (20.4) 

Uninformed Err (7) 16.20(55.2) 6.20(21.1) 6.93 (23.6) 

Uninformed Err (8) 16.65 (57.3) 450(15.5) 7.90 (27.2) 

The primary purpose of Experiment 8 was to differentiate between 

the psychological effects on hypothesis-testing heuristics of informing 

subjects of the possibility of error and the effects of actual error. As in 

Experiment 7, error did not increase subjects' use of a positive test 

strategy. For instance, across all conditions the percentages of subjects' 

expectations ("Yes", "No", "Unsure") regarding test results were very 

similar with subjects expecting almost three times as many tests to fit, 

as not fit, the rule. However, Error subjects were more likely to use a 

greater number of trials and to repeat tests than No Error and Informed No 

Error subjects. Thus error, but not informing subjects of the possibility 

that error might occur, affected hypothesis-testing heuristics by 

increasing overall testing and repetition. 

Compared to No Error subjects, Informed No Error subjects used a 
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similar number of tests and were not likely to repeat tests, but less likely 

to solve the task on their first rule announcement. Only 8 of 20 (40.0%) 

Informed No Error subjects solved the task on their first announcement, 

compared to 16 of 20 (80.0%) No Error subjects. Several factors, such as 

uncertainty about the reliability of the data, a preference for initially 

using a positive test strategy, and the availability of reliable rule 

feedback from the experimenter, might have contributed to the lower 

first-announcement solution rates for the Informed No Error subjects. For 

instance, Informed No Error subjects had a higher percentage (36.4%) of 

"Unsure" test result expectations than No Error subjects (23.8%), 

indicating that the possibility of error increased subjects' uncertainty 

about test results. Of the eight Informed No Error eventual solvers, two 

(25.0%) responded as "Unsure'' about the results for the majority of tests 

conducted, while three (37.5%) expected and received only confirmatory 

results and two (25.0%) received one disconfirmatory result before making 

their first rule announcement. The latter two subjects modified their 

original hypotheses to include the disconfirmatory results, but did not 

completely abandon their original ideas. Thus, it appeared that the 

majority of these eventual solvers based incorrect first announcements 

primarily on confirmatory test results and disconfirmed original 

hypotheses by announcing them as rules. 

As in Experiment 7, Error subjects who attempted to establish an 

initial hypothesis using a positive test strategy were quickly misled by 

early spurious disconfirmation. In contrast, Informed No Error subjects, 

somewhat uncertain about data quality, were able to use a positive test 

strategy to develop well-confirmed hypotheses and then depend on the 

reliability of experimenter rule feedback to confirm or disconfirm them. 
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Walker and Tweney (1986) recently compared restricting or not 

restricting the number of rule announcements and demonstrated that 

subjects were less likely to use a negative test strategy and more likely 

to announce well-confirmed hypotheses as rules when no restrictions 

were placed on the number of rule announcements. Any further error 

research using this or other hypothesis-testing tasks should be designed 

to minimize the use any source of information other than data collection 

for hypothesis testing (e.g., permitting only one rule announcement). 

As demonstrated in both experiments, subjects given error conducted a 

significantly greater number of tests and were more likely to repeat tests 

than subjects given no error, supporting Kern's (1982) and Markowitz and 

Mynatt's (1982) general findings. The greater number of trials and higher 

number of subjects repeating tests in the Error conditions also indicated 

that subjects were attempting to cope with the confusing combinations of 

sequences produced by both spuriously confirmatory and disconfirmatory 

trials. However, in contrast to the Kern and Markowitz and Mynatt studies, 

Error subjects did not demonstrate a preference for replicating only 

disconfirmatory trials. Instead, Error subjects appeared to become 

suspicious of the data overall and replicated both confirmatory and 

disconfirmatory trials. Increased repetition in the Error conditions, 

combined with the greater number of tests conducted, resulted in building 

a large and confusing data base contaminated by both spuriously 

confirmatory and disconfirmatory results. 

The study also indicated that, in general, subjects did not increase 

their use of a positive test strategy when the possibility of data error 

was introduced. The findings of Experiment 8 support Gorman's recent 

results in which subjects who were informed about, but not given actual 
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error, did not spend a great deal of time replicating tests to check for 

error. However, unlike Gorman's subjects, Informed No Error subjects in 

the current study did not test significantly more sequences than No Error 

subjects to rule out the possibility of error. As noted earlier, the primary 

difference between the No Error and Informed No Error conditions was 

found in how subjects verified their initial hypotheses. Many Informed No 

Error subjects first established a well-confirmed hypothesis, appearing to 

ignore the possibility that some confirmatory trials might be erroneous, 

and made a premature incorrect rule announcement. Gorman's study, on the 

other hand, restricted rule announcements, which might have compelled 

subjects to conduct more tests to check for error. 

Most successful subjects in both experiments given the Single-Rule 

task version used a combination of early confirmation followed by later 

disconfirmation to solve the task. This finding supported the results of 

Walker and Tweney (1983) and Walker (1985, 1986). 

In general the study has shown that actual system failure error 

decreased the likelihood that a well-confirmed hypothesis could be 

established, in part at least, due to spuriously disconfirmatory results. In 

contrast to the No Error conditions, the introduction of system failure 

error, both as a possibility and as an actual occurrence, affected the use 

and utility of confirmatory heuristics in the process of hypothesis 

discovery. Thus, though a confirmatory heuristic was useful for 

establishing a hypothesis, it was an inefficient method for eventually 

solving the task unless combined with some attempts to disconf irm and 

systematic replication for determining the extent of error present in the 

data. 
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PART 3 

RESEARCH ON DATA ERROR USING 

DATA SELECTION PARADIGMS 

CONTENTS 

A. Prior Research 

B. Research Conducted Under This Contract 

Experiment 9 a, b, c Three versions of a pseudodiagnosticity task 

aimed at determining whether subjects might 

select potentially perfectly diagnostic data 

Experiment 10 a, b Two versions of a task aimed at determining 

whether a prior hypothesis is needed to trigger biased data 

selection. 
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A. PRIOR RESEARCH 

Ina recent review, Fischoff and Beyth-Marom (1983) concluded that 

the most powerful of several "metabiases" which are exhibited by people 

attempting to test hypotheses "is the tendency to ignore P(D/not-H) when 

evaluating evidence" (p.257). in a simple case in which this metablas 

operates, subjects are asked to choose between two hypotheses (H and 

not-H), based on two data, D, and D2. They are given the values of P(H) and 

P(D,/H), and are then asked to select one more conditional probability 

from either P(D,/not-H) or P(D2/H). On a Bayesian analysis, the normative 

solution to such a problem is to choose both P( D,/H) and P(D,/not-H). 

This is because likelihood ratio, P(D/H)/P(D/not-H), necessary to 

calculate the posterior odds that H is true (that is, the likelihood that H 

rather than not-H is the case following receipt of the datum D), requires 

both values.  Since the diagnosticity of a given datum D is determined by 

the extent to which the likelihood ratio deviates from 1.0, diagnosticity is 

unknown unless both P(D,/H) and P(D,/not-H) are known. Thus, failure to 

select P(D,/not-H) is non-normative; it Is, however, very common. 

The failure to select P(D/not-H) can be seen as a failure to consider 

alternative hypotheses. Failure to consider alternatives has been 

demonstrated across a number of tasks and subject populations. For 

example, a generalization in both the concept formation and problem 

solving literatures is that people tend to focus on one hypothesis at a time 

(e.g., Newell «.Simon, 1972, p. 752). The same tendency is also vividly 
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shown in research on theory perseverance (e.g., Jennings, Amabile, & Ross, 

1982) and illusory correlation (e.g., Smedslund, 1963). It has been shown 

in relatively simple tasks such as Wason's (1960) 2-4-6 problem and in 

more complex situations such as simulations of scientific problems 

(Mynatt, Doherty, & Tweney, 1978). Subjects as diverse as college 

students (Mynatt, Doherty, & Tweney, 1977), Protestant ministers 

(Mahoney & DeMonbreun, 1978), advanced medical students (Kern & 

Doherty, 1982), and scientists (Mitroff, 1974) have exhibited it. 

The research most relevant to the present report is that involving the 

"pseudodiagnosticity" paradigm (Doherty, Mynatt, Tweney, & Schiavo, 

1979; Doherty, Schiavo, Tweney, & Mynatt, 1981; Kern & Doherty, 1982; 

Beyth-Marom & Fischoff, 1983). In these studies subjects are typically 

given a choice between P( D,/not-H) and information which is 

diagnostically worthless. For example, Doherty, et al., (1979) asked 

subjects to decide from which of two islands an archaeological find (a 

pot) had come. They were given six binary characteristics of the find (e.g., 

that it had a curved handle) and were allowed to choose between items of 

information representing the % of pots made on the two islands which had 

a given characteristic (e.g., the % of pots made on one island which had 

curved handles and the % of pots on the other island which had curved 

handles). These two pieces of information are equivalent to P( D./H) and 

P( D,/not-H) where H and not-H represent the two islands. The 

information was presented in a 2 x 6 array (two islands by six pot 

characteristics) and subjects were told that they could choose any six 

items from the array. Given this constraint, the normative solution is to 

choose any three pairs of items; that is, to choose P(D/H) and P(D/not-H) 
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for three pot characteristics. Out of 121 subjects 11 (9%) chose three 

pairs; 71 (59%) choose no pairs. Thus the majority never selected 

information which would allow them to determine either the diagnosticity 

of the data they had (the pot characteristics) or the posterior odds that 

the pot came from a given island, and fewer than one in ten selected 

items in an optimal way. Subjects nevertheless revised their estimates of 

the likelihood that the pot came from a given island, even though most of 

them had selected diagnostically worthless information. Doherty, et al. 

labeled this phenomenon "pseudodiagnosticity". 

In all of the research cited above, subjects were attempting to 

determine the relative likelihood of some set of hypotheses, e.g., is it 

more probable that a pot came from this island or from that island; does a 

person have this disease or that disease? These tasks are a subset of a 

large class of real world problems, for instance a scientist testing two 

rival theories or a mechanic attempting to determine whether or not the 

ignition system on a motorcycle is faulty. We will call such problems 

"Inferences" since they involve the attempt on the part of the person to 

infer something about the state of the world. The present research also 

addresses inferences, but there is no implication that the results are 

generalizable to cognitive tasks other than inferences. Current research 

in our laboratories suggest strongly that the conclusions drawn above are 

specific to inferences, a very important class of cognitive tasks. 

An attractive feature of the pseudodiagnosticity paradigm is that 

there is a normatively correct data selection. An example of an inference 

would be a decision about whether an unknown car is a Toyota Tercel or a 

Ford Tempo. Assume that two types of information are potentially 

available about each alternative - the percentage of Tercels and Tempos 
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which get better than 25 miles per gallon and the percentage of Tercels 

and Tempos which are driven 50,000 miles with no significant mechanical 

problems. The problem can be represented in the following manner: 

Information 
Categories 

1 

Rlternatlues 

1 2 
Tercel Tempo 

% ouer 
25 mpg 

R B 

C 0 
% ouer 50,000 
miles with no 

problems 

Assume that a subject is told that the unknown car gets over 25 mpg 

and that it has gone over 50,000 miles with no mechanical problems; that 

is, the subject is given two pieces of data, D| and D2- The subject is also 

given one of the cell entries, say P(D1/H1); i.e., cell A. The task is to infer 

whether the car is a Tercel or a Tempo, and any one of the three remaining 

probabilities can be chosen. In such a static, two-alternative Inference 

problem where the available data are conditionally independendent, where 

Cell A is given, and only one more datum may be selected, then: 

P(H1)P(D1/H1) 

PGVDj) 

P(H,)P(D,/H,)* P(H2)P(D,/H2) 
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As noted above, only P(D1/H2), that is, Cell B, permits computation of the 

posterior probability P(HJ/DJ) 

Note that if this were a problem calling for the person to decide 

whether to purchase one of the cars, i.e., calling for an action, there is, 

strictly speaking, no normatively correct set of cell choices. In the case of 

inferences there is a "true" state of nature and certain cell choices 

maximize the likelihood of finding out what it is. In the case of actions, 

however, there is no objective, external criterion ("what is") against 

which to evaluate a decision. 
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B. RESEARCH CONDUCTED UNDER THIS CONTRACT 

It should be noted at the outset that the tasks set for subjects in this 

part of the final report use what the introduction calls "pre-encoded" 

error, i.e., the % values correspond to P(D/H) and P(D/not-H). The error is, 

in effect, in the relation between the data and the hypothesis, rather than 

being identifiable as in the data per se. This paradigm is included because 

it affords an opportunity to determine whether subjects will seek data 

which bear an unambiguous relation to some hypothesis when the 

unambiguous data are potentially disconfirming, when potentially 

confirming but ambiguous data are equally easily available. Hence it is 

relevant to the general issue of subjects' data selection biases in the face 

of uncertainty. 

Three variations of a single experiment were run. There were three 

separate versions in order to assure a modest degree of cross-task 

generalizability within the pseudodiagnosticity paradigm. That is, we 

wished to rule out the possibility that whatever results were obtained 

would be attributable to the specific numerical values of the terms in the 

scenarios. 

EXPERIMENT 9a 

Subjects. Seventy-two students enrolled in introductory psychology 

classes participated in the experiment. 

Materials and Procedure. All instructions and manipulations were 

accomplished by varying the content of a two-page booklet, patterned 

after the ones used in Doherty et al. (1979, 1981). The following text 

appeared on the first page as an introduction to the task: 
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"An archaeological expedition is trying to recover artifacts 
from many ancient, island civilizations. Currently the expedition 
is recovering artifacts from Emerald Island and Azure Island. Both 
islands are known to have produced much fine pottery, and both 
are known to have lost much of this pottery at sea. 

Imagine that you are part of this expedition. Specifically, 
you are a museum curator whose job it is to identify pots brought 
up from undersea dives. You know the following. 

The two civilizations, Azure and Emerald Islands, had kept 
careful records of all pots shipped out on their merchant ships. 
These records were uncovered by a previous expedition. Emerald 
Island is known to have lost 1600 pots at sea, while Azure Island 
is known to have lost fewer, in fact, about 1200. 

One day a call comes in from a wireless on the ship. A new 
artifact has been found, in perfect condition and it is a pot. You 
wish to find out as soon as possible which culture has produced 
the pot, but you are unable to go to the expedition site. The crew 
on the ship is very busy, but they will speak with you for a short 
time. You can only ask one question about the artifact at a time 
when you radio them. You check the merchant's records and find 
that one way in which pots made by the two islands were 
different was the type of clay, as follows: 

Azure Emerald 

Red clay 52% QB% 

Tan clay 48% 12» 

In half of the booklets, the base rate favored Emerald while the 

remaining booklets favored Azure. The next paragraph indicated that a 

phone call could be made to determine whether the pot was made of red or 

tan clay. The phone cal) was simulated by peeling off an opaque sticker 

from the answer to one of the following questions: 
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Is the pot made of red clay? 

Is the pot made of tan clay? 

Both answers to the "phone calls' favored the island with the highest base 

rate. Subjects then were asked to state their hypothesis about which 

island produced the piece of jewelry. 

Page 2 of the booklet instructed 5s that ancient records showed that the 

two islands tended to specialize in pots of different size. One form of the 

following table was then printed: 

Emerald Azure Emerald Azure 

Small 0% 32% Small      20% 32% 

Medium 23% 46% Medium    23% 46% 

Large 77% 22% Large      57% 22% 

5s then made another phone call to determine the size of the pot. The 

phone call was simulated by peeling off an opaque sticker from the answer 

to one of the following questions: 

Does the pot hold an ounce? 

Does the pot hold about 2 quarts? 

Does the pot hold several gallons'? 

Subjects were then asked to state their final conclusion about the source 

of the pot, but the data about their conclusions are not germane to the 

issue of data selection. 
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On page 2, the percentages associated with the pot sizes were 

manipulated in two ways: (1) a "0" or "23" appeared in column 1, and (2) 

the "0" or "23" appeared in the Small, Medium, or Large column. These 

manipulations were crossed with the base rate manipulation (favored 

Emerald or Azure) to construct twelve forms of the booklet. Six forms 

assigned the higher base rate to Emerald and used "0" or "23" in each of 

three pot sizes. Another six forms favored Azure and also used "0" or "23" 

in each of the three pot sizes.  The phone call responses on page 2 were 

not of interest, nor was the final response: these were on the page only to 

complete the task for the subjects, since our interest was in the data 

selection. 

EXPERIMENT 9b 

Subjects. Seventy-two students enrolled in introductory psychology 

classes participated in the experiment. 

Materials and Procedure. Experiment 9b used modified versions of the 

booklets described in Experiment 9a. The booklet in Experiment 9b 

described civilizations on Jasper and Amber islands. Three factors were 

changed from Experiment 9a: (1) base rates of 1000 and 800 were used, 

(2) the differences in within-row percentages in the table on page were 

reduced by 28 (i.e., 1st row= 42% and 39%, 2nd row- 58% and 66%), and (3) 

a "7" was used In the table on page 2 rather than a "23". Other entries in 

the table were modified to maintain a sum of 100% within each column. 

EXPERIMENT 9c 

Subjects. Seventy-two students enrolled in Introductory psychology 
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classes participated in the experiment. 

Materials and Procedure. Experiment 9c used modified versions of the 

booklets used in Experiments 9a and b. The booklet in Experiment 9c 

described civilizations on the Granite and Quartz islands. Three factors 

were changed from Experiment 2 to Experiment 3: (1) base rates of 550 

and 450 were used, (2) the differences in within-row percentages in the 

table on page 1 were reduced by 2 (i.e., 1st row* 548 and 48%, 2nd row« 

46% and 52%), and (3) a " 13" was used in the table on page 2 rather than 

a "23". Other entries in the table were modified to maintain a sum of 100% 

within each column. 

RESULTS 

The results of the three experiments, 9a, b and c, will be treated 

together, since they are designed to be replications of one another. The 

great majority of the subjects responded appropriately to the task, 92% of 

them concluding that the island favored by the base rate and by the data on 

page was the favored island. The data choices made by each subject on 

page 1 were tallied. Table 3-1 shows these choices broken down by the 

island favored by the base rate, and totaled over islands by whether the 

choice of datum about which to ask would, assuming a "yes*' response, tend 

to favor the island already favored by the base rate. Considering the 

favored island as a hypothesis under test, the frequency tally described is 

tantamount to a test for confirmatory bias. (See Table 3-1). The 

frequencies shown in bold face are those consistent with a bias to confirm 

the hypothesis that the base rate favored. 
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Table 3-1. The frequency of data choices8 associated with each set of 
P(D/H) values on page 1. 

Island favored    feature 
by the base rate 

Data set          Choice frequency 

Amber 
(1000:800) 

Loose lid 
Attached lidb 

Jasper 
42% 
58% 

Amber 
34% 
66% 

13 
23 

Jasper 
(1000:800) 

Loose lid 
Attached lid5 

Amber 
42% 
58% 

Jasper 
34% 
66% 

23 
13 

Quartz 
(550:450) 

Made of goldb 

Made of silver 

Quartz 
54% 
46% 

Granite 
48% 
52% 

28 
8 

Granite 
(550:450) 

Made of gold5 

Made of silver 

Granite 
54% 
46% 

Quartz 
46% 
52% 

33 
3 

Emerald 
(1600:1200) 

Red clayb 

Tan clay 

Azure 
52% 
46% 

Emerald 
88% 
12% 

16 
20 

Azure 
(1600:1200) 

Red clayb 

Tan clay 

Emerald 
52% 
48% 

Azure 
88% 
12% 

18 
18 

Totals Favoring base rate 
Counter to base rate 

141 
75 

8 The frequencies in bold face are of those choices favoring the base rate. 
b the feature which is present in the pot on page 1. 
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Note that there is a strong tendency in the page 1 choices for subjects 

to prefer data likely to favor the hypothesis (such frequencies are shown 

in bold face) they already hold. This tendency shows up in the choices of 

those subjects in the two versions of the experiment in which the data 

were relatively non-diagnostic (note that the P(D/H) ratios were 

relatively similar for the data in both the Quartz/Granite and the 

Amber/Jasper comparisons. In the the Emerald/Azure comparison, the 4:1 

ratio for tan clay apparently influenced a number of subjects to select tan 

clay about which to ask. Even with the data of the Emerald/Azure 

comparison included, the overall x2 for the entire data set (141 vs. 75) was 

significant, (x2( 1) = 20.17) supporting the hypothesis that confirmatory 

bias influences data selection. 

The data choices on p. 2 were tallied in a fashion similar to that for 

page I. Table 3-2 summarizes these choices, again showing the choices 

favoring the base rate in bold face. Since the basic purpose of this 

investigation was to determine if subjects would seek out data that had 

the potential for being perfectly diagnostic, i.e., data pairs where one of 

the values of the % was 0, the data are further broken down by whether the 

set of choices available to the subject did or did not include a pair with a 

0% as one of the three pairs of %$. We will refer to the datum associated 

with the 0% as the "08 datum". The corresponding datum in the matched 

set (I.e., the datum in Amber or Jasper associated with I \%, the datum in 

Quartz or Granite with 13%, and that in Emerald or Azure with 32%) will 

be referred to as the "designated datum". 
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Table 3-2. The frequency of data choices3 associated with each set of 
P(D/H) values on page 2, collapsed over the position of P(D/H). The choices 
data are presented separately for those forms which had a zero P(D/H) and 
for those that did not. 

Island 

Amber 

Jasper 

Data 
type P(D/H) Values 

0 & 11 or 7 & 11 53 & 27 or 46 & 27 47&62 

0%               8 8 2 
11%               3 8 7 

0%              8 4 6 
11%               1 9 8 

0&220M3&22 56&21or43&21 44&57 

Quartz        0%              8 1 9 
13%               1 5 12 

Granite       0%              7 3 8 
13%               1 7 10 

0&32or20&32 77&22or57&22 23 & 46 

Emerald      0%               10 6 2 
32%                3 12 3 

Azure         0%              7 7 4 
32%                1 10 7 

The frequencies In bold face are of those choices favoring the base rate. 
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While these are virtually raw data, close inspection shows that the 

presence of a 0% attracts subjects to select the datum associated with 

that 0% more frequently than the designated datum. Table 3-3 sums the 

frequencies over the three experiments. This gives a clearer picture of 

the influence of the 0% datum, which is potentially perfectly diagnostic. 

Table 3-3. The data of Table 3-2 collapsed over island names and values 
of P(D/H), sorted into choices more likely to confirm or to disconfirm. 

Data type 0% datum Confirming        Disaffirming 
Designated datum 

with 0% 23 ♦ 25 36 24 
without 0% 3+7 54 44 

I 26     32 90 68 

Note that those choices associates with the 0% datum are as likely to 

be for the 0% when it is dlsconfirming as when it is confirming. 

Therefore, we collapsed the frequencies in the first column of data in 

Table 3-3 to obtain Table 3-4. 

Table 3-4. The data of Table 3-3 with the data selection frequencies 
associated with the 0% datum collapsed over confirmatory and 
dlsconf irmatory selections. 

Data type 0% Datum 
Desig. Datum Confirming       Disaffirming 

WlthO% 48 36 24 
without 0% 10 54 44 

2 58 90 68 
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A x2 test for association on tne data of Table 3-4 snows that the 

subjects' data choices are influenced jointly by the presence of the 0% 

datum and by whether the nonzero data are confirmatory or 

disconfirmatory: %2(2) = 34.38 (p < .01). Ax2 test of the null hypothesis 

that the designated datum is as likely to be chosen as the 0% datum (48 vs. 

10) suggests that the 0$ datum does indeed get chosen more frequently 

(X2( 1) ■ 24.90, p < .01) than its counterpart. Note that the tendency of 

subjects to select the 0% datum is not influenced by the magnitude of the 

% associated with the designated datum: x2(2) = 0.12. n.s., (see Table 3-5). 

Table 3-5. Frequency of choice of the 0% datum as a function of the 
associated with the designated datum. 

% associated with 
the designated datum       11% 13% 32% 

Frequency of choice 
of 0% datum 16 15 17 

Finally, note that the normally robust finding of a bias to confirm 

seems to have been disrupted by whatever cognitive processes have been 

engaged by the the time that the subjects are selecting the data on page 2. 

There no tendency toward a bias to confirm in the data selections of the 

pairs that Include a 0% datum. Nor is there a significant tendency toward 

a confirmatory bias on the part of those subjects who chose from the 

other pairs of %s, the pairs that included neither a % datum nor a 

designated datum (90 vs. 68 from Table 3-4): x2( 1) - 3.06, n.s. 

While the normally robust tendency toward a confirmatory bias may 

have been disrupted by the presence of the 0% datum, it may also have been 
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attenuated by an unexpected phenomenon, which to our knowledge has not 

been observed before. There was a strong tendency for subjects to select 

large percentages, irrespective of their diagnostic impact. There are 30 

pairs of 3s listed in Table 3-2, exclusive of those with a 0% datum, and 

the correlation between the sum of the %s for each such pair and the 

frequency of data selection for that pair is r(28) - .58, p < .01. This is a 

nonrational phenomenon, and cannot be explained by positing a relationship 

between the magnitudes of the numbers and a confirming vs. falsifying 

relation to the hypothesis under consideration: the design of the study 

makes that relationship precisely zero. Nor is there in this study a 

relationship between diagnosticity and magnitude. This unforeseen 

phenomenon apparently obscured the expected effect of a bias to confirm, 

expected to appear in data choices other than those of the 0% datum. 

DISCUSSION 

This set of studies shows clearly that some subjects are sensitive to 

diagnosticity, when that diagnosticity is made highly salient. The data of 

page 1 indicated that the great majority of subjects (74%) sought 

confirmatory evidence when the data were not highly diagnostic. That 

dropped to 47% when the disaffirming datum had a likelihood ratio of 4:1, 

as opposed to the 1.69:1 likelihood ratio for the potentially confirming 

datum. On page 2, the subjects were almost 5 times as likely to select a 

0% datum as they were to select a designated datum. This is a powerful 

effect, except that we must bear in mind that it was still a minority (48 

of 108, or 44%, see the top row of Table 3-4) who chose the 0% datum. 

As noted in the introduction to Part 3, this study does not manipulate 

data error in the sense described in the general introduction. But this 

study does show clearly that subjects are sensitive to the possibilities 
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associated with data that may be, in a sense, perfect. Many subjects 

select such data even when the data are likely to provide evidence against 

their hypotheses. Diagnosticity effects appear, however, only when the 

diagnosticity is extreme. Moderate differences in diagnosticity do not 

influence data selection at all, as the two right hand data columns in Table 

3-2 indicate. 

While it was not part of the formal proposal, an additional study was 

conducted to show the power of confirmatory bias in cognitive tasks, and 

to try to gain some insight into an explanation of that confirmatory bias. 

EXPERIMENT 10a 

Subjects. One hundred thirty five students enrolled in the introductory 

psychology course served as subjects. 

Materials and Procedure. All instructions and questions were presented in 

a booklet. The following text was presented: 
Suppose you were shown two large sacks, one called A, the 

other B. Suppose further that you were told that both sacks were 
full of red and blue marbles, in different proportions. Sack A is 
filled with thousands of marbles, 70» of them are red, 30?? are 
blue. In Sack B there are also thousands of marbles, but the 
proportions are reversed, with 70» of the marbles being blue and 
30» being red. 

I reach into the sack on the right and draw out a handful of 12 
marbles. There are 7 red marbles and 5 blue ones in the sample. 
This Is fairly strong evidence that the sack on the right is Sack A, 
But there is some chance that it is the other sack. If you had to 
decide whether I had sampled from Sack A or from Sack B, and I let 
you draw another sample, that is, a second handful of marbles, 
would you draw that sample from the sack on the right or from the 
sack on the left? 

The left sack        The right sack  
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RESULTS 

The sack named in the version as the one from which the sample had 

been drawn was randomized. The position of the choices was always as 

shown. A Bayesian analysis shows that the information provided by either 

choice is equally informative. Subjects strongly preferred to sample the 

same sack that had been named in the problem statement (i.e., the right 

sack in the above version). The effect was, to put it mildly, strong, with 

121 preferring the same sack and 14 preferring the alternate one: x2( 1) ■ 

64.00, p<.01). 

EXPERIMENT 10b 

Subjects. One hundred sixteen students enrolled in the introductory 

psychology course served as subjects. 

Materials and Procedure. All instructions and questions were presented 

in a booklet. The following text was presented: 
Suppose you have two decks of cards in front of you. They 

have been mixed up so that one deck has 75% black cards and 25% 
red cards, instead of the usual 50/50 split. The other has 25% black 
and 75% red. Your task is to tell me which deck is which, by 
observing two cards. I turn over a card from the deck on your right 
and it 1s red. That is fairly strong evidence that the right hand deck 
is the predominantly red deck, but there Is some chance that It is 
not. Now I am going to turn over another card. From which deck 
would you want me to turn over the second card? 

The left hand deck  The right hand deck  

RESULTS 

As In the sack task, the deck named in the statement was randomized, 

but the choices were as shown  Again the preference was extreme, with 

105 subjects preferring to draw a card from the same deck, and 11 

preferring the other deck: x2 (l) = 76.17, p < .01. Across the two versions 
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of this task, fully 90?? of the subjects preferred to sample from the same 

data source that they already had data about. Combining the two groups of 

subjects, we see that 226 preferred the same source, 25 the other source: 

X2(l)= 160.96, p<.01. 

DI5CU55I0N 

Both version of this data selection task shows show a powerful bias to 

select information about a single hypothesis. Note that there does not 

seem to be any way to explain this as a "bias to confirm," given the 

structure of the task. We interpret this as a possible, nonmotlvatlonal 

explanation of the widely cited "confirmatory bias" (Tweney, Doherty & 

Mynatt, 1981), since tasks in which subjects show confirmatory bias also 

have the quality of having subjects select data about a single hypothesis 

(Doherty & Mynatt, 1987). We will return to this In the general discussion, 

but we believe that this same inability (or unwillingness) to consider 

alternate hypotheses may underlie the destructive effects of 5F error. 
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Experiment 11. ME and SF error in the input 

Experiment 12. ME and SF error in the Input and the Feedback 
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A. Prior Research. 

In studies of error effects many decisions must be made concerning how 

error is introduced into the task. One decision concerns whether the error 

is located in the input data which form the basis for inferences or 

predictions, or in the feedback concerning their correctness. Experiments 

11 and 12 address this issue and, in addition, seek to generalize the 

findings of the earlier studies to more complex task domains. 

As noted in the introduction, Kern (1982) first distinguished between 

system failure (SF) and measurement (ME) error. Her study began with the 

role of confirmation bias in scientific inference, and asked whether the 

error in data could serve subjects as a source of auxiliary assumptions 

used to protect a favored hypothesis from disconfirmation. 

The task used by Kern was based loosely on "artificial universe" studies 

of scientific inference (Mynatt, Doherty, & Tweney, 1977;1978). Subjects 

were asked to imagine that they were scientists investigating an 

unexplored planet from an orbiting spaceship. By dropping probes to the 

planetary surface, they could determine which regions of the planet were 

capable of supporting life. Subjects were asked to determine a line on the 

planet surface which separated regions capable of life-support from 

regions incapable of life-support. On each trial, subjects could drop a 

probe to the surface at a region of their choice and determine whether 

imaginary plants (called "tribbles") survived or failed to survive. Based on 

data from the probes, subjects were asked to move a hypothesized 

boundary line to a position that distinguished the two regions. Kern's 

display screen is shown in Figure 4-1. 
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Both SF error and ME error were manipulated, but in very different 

ways. For ME, subjects were told that the locations of dropped probes on 

the planet surface were known only within certain limits represented by 

the horizontal bar in Figure 4-1. The length of the bar corresponded to the 

positional uncertainty of the probe. For SF, subjects were told that the 

telemetry device in the probe (which indicated whether the tribbles lived 

or died) could fail on 25% of the trials. Thus, whether the device reported 

"lived" or "died" was determined randomly on 25% of the trials, rather than 

by the actual location of the tribble relative to the critical line. 

Kern found that subjects faced with ME were no different in accuracy of 

placement of the final hypothesis line than control subjects whose data 

contained no ME. Similarly, in experiments 1-6, described earlier in the 

present report, subjects seemed able to "average" over such error. 

However, subjects in Kern's study who had to cope with SF error did much 

worse than control subjects given accurate feedback. In addition, she 

found that subjects were more likely to challenge the accuracy of probes 

(through a "probe-check" routine) when the feedback disconfirmed their 

hypothesis. Thus, the presence of SF error apparently led subjects to 

invoke error to "explain away" data not confirming their current 

hypothesis. Kern's results thus reflect outcomes similar to our results in 

Part 1, experiments 1 through 6. 

Kern's research was innovative and insightful, but interpretation of her 

data is made difficult by the presence of inadvertent confounding in her 

design. By placing ME in the location of the dropped probes, and SF on the 

feedback from the probes, Kern confounded type of error with locus of 

error. Could this make a difference? 
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B. RESEARCH CONDUCTED UNDER THIS CONTRACT 

Experiments 11 and 12 separately manipulated SF and ME at each of the 

two loci of error. Experiment 11 examined the effects of ME and SF 

located in the input, and 12 the effects of ME and SF in the feedback. Since 

survival was causally dependent upon location, input was defined as data 

which reflected the location of dropped probes. Feedback was defined as 

data which reflected the survival of the tribbles. In experiment 11, error 

of either type could affect the ability of subjects to drop a probe at a 

predetermined location, but not the validity of results from each probe; 

whatever the location of the probe, the feedback (whether tribbles lived or 

died) was veridical. In experiment 12, error was added to the feedback 

from the probe, but did not affect a subject's ability to place a probe at a 

predetermined location. Thus, probes always landed at the subject's choice 

of location, but error of either type was potentially present in the 

feedback whether the tribbles lived or died. 

The task environment and procedure were similar to those used by Kern 

(1982), in that subjects in both experiments 11 and 12 were asked to "role 

play" the part of a scientist investigating an unexplored planet. 

Specifically, subjects were asked to launch tribbles to the planet's surface 

from a spaceship visible on the screen. Subjects were told that survival of 

tribbles depended only on the moisture content present in the planet's soil; 

tribbles would grow above a certain moisture content, below this moisture 

content they would die. Subjects were asked to determine the critical 

moisture level by launching probes to various points on the planet's 

surface to see whether the tribbles survived at each location. 
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To facilitate the task, subjects were told that the percentage of soil 

moisture on the planet surface increased uniformly from west (the left 

side of the screen) to east (the right side of the screen). A vertical line 

across the planet surface, indicating a tentative hypothesis for the 

minimum moisture level necessary for the tribble colony to survive, was 

shown on the screen at the beginning of the task. Before each launch, 

subjects were asked to predict whether the tribble they were about to 

launch would live or die. After each launch, subjects were given a chance 

to move the moisture level hypothesis line to a new position. 

Experiment 11 

METHOD 

Subjects. The subjects in this experiment were 63 graduate and 

undergraduate students, each of whom was paid $5.00 for participating. 

Subjects were recruited from classes in introductory and abnormal 

psychology, honors psychology, biology, chemistry, and geology. Subjects 

were randomly assigned to experimental conditions. Three levels of ME 

error: None: 2 units (I. e., the tribble was represented as landing in an area 

that was 2 pixels wide), Low: 20 units, High: 80 units. ME was crossed 

with three levels of SF error (None: 0%, Low: 25%, High: 50%) yielding 

nine experimental conditions with seven subjects in each cell. 

Procedure. Subjects signed up to participate in groups of 2 to 4 persons 

each. After meeting the experimenter in a waiting area, subjects were 

taken to a small computer lab. Four Macintosh computers that had been set 

up for the appropriate experimental conditions prior to subjects' arrival 

displayed the beginning screen as subjects entered. Before the task began, 
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subjects were told that they were all working on variations of the same 

task and that the computers would make a variety of sounds. Brief 

instructions were given on the use of the mouse to select commands for 

the computer. Subjects were asked to read through the instruction booklet 

next to their computer and told that they could ask questions at any time. 

Subjects began the task when they finished reading the instructions. 

Each subject launched a series of eight tribbles, one at a time, and 

received feedback after each launch about whether the tribble lived or 

died. The actual probability of survival of a tribble launched to a specific 

location was either 0.0 or 1.0, determined by whether the launch was the 

left or right, respectively, of the critical line. After the completion of 

eight launches, subjects in all conditions were informed that enough 

resources were still available for four more tribbles to be launched.  Thus, 

all subjects launched a total of 12 tribbles. 

ME error was manipulated by varying the width of the rectangle shown 

on the screen representing the approximate location on the planet's surface 

to which the tribble had been launched. In the High and No SF error 

conditions, the instructions emphasized that "the planting area depicted on 

the computer screen is only the area where the tribble was Intended to be 

launched to, not necessarily the area where it was actually launched to". 

Pages 158-169 provide an example of the instructions, which varied 

somewhat depending on the experimental condition. These are specifically 

the instructions from the Low ME- No SF condition. 
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*********************** 

* INSTRUCTIONS * 
*********************** 
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You are a scientist investigating an unexplored planet, Ethereus. Right 

now, you are orbiting Ethereus in a spaceship. From your spaceship, you can 
conduct a variety of controlled experiments. Previous research has shown 
that certain life forms exist on the planet, but the conditions which support 
these life forms are very poorly understood. Your research project will 
involve the growth of a plant, the tribble, found in certain regions of 
Ethereus. The tribble was selected as the focus of this initial investigation 
because earlier work suggests that its survival depends onltj on the amount 
of moisture present in the soil. It is suspected that above a certain moisture 
content, tribbles grow. Below this moisture content, the tribbles die. 

Your task is to determine what this critical level is by 
systematically planting tribbles at various points on the planet's 
surface and seeing whether or not they survive at these locations. 
Each  of the points you select for planting win have a certain 
moisture level, which determine whether the tribble lives or dies 
there. 

The site of the investigation will be a 250,000 square-mile area 
encompassing a large portion of the planet's southern hemisphere. Referring 
to Figure 1 (a picture of what the computer screen will show during the 
experiment), this area of investigation is depicted by the large box 
encompassing the bottom 2/3 of the figure (see A). 

***Referto Figure 1 *** 

Fortunately, research has established that the distribution of moisture 
in the planet's soil is remarkably regular. The percentage of soil moisture on 
the planet's surface INCREASES uniformly from west (left side) to east 
(right side). Preliminary data indicate that tribbles can survive only when 
the percentage of moisture in the soil equals or exceeds a certain level. This 
level is indicated by the solid line drawn vertically across the planet's 
surface. (See B). Your job is to conduct a more thorough investigation of the 
tentative hypothesis,that tribbles can survive only at moisture levels equal 
to or exceeding the level displayed by this line, by planting them east or 
west of the line and observing whether they live or die. 

Each time you are ready to plant a tribble, you will see your spaceship 
appear in the orbit-area above the planet (See C). At this time, you are ready 
to prepare to launch a tribble to the planet's surface. Position your 
spaceship launcher (the marker protruding from the bottom of the spaceship) 
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exactly above the place you wish to plant the tribble. Positioning is 
conducted by the spaceship control panel in the upper right corner of your 
computer screen (See D). To activate the spaceship, you move the 
cursor/arrow (by moving the mouse) to thß desired button, position the 
arrow within the button (as is shown on the figure), and then click the mouse 
once to activate the button. The arrow buttons designate the direction of 
spaceship movement If you want to move the spaceship to the East, use the 
" >" button. If you want to move the spaceship to the West, use the 
"< * button. The "STOP" button stops the spaceship from moving irr any 
direction. YOU MUST STOP THE SPACESHIP FROM MOVING IN ANV DIRECTION 
BEFORE YOU CAN EXECUTE ANY OTHER CONTROL PANEL COMMAND (SUCH AS, 
MOVING IN THE OPPOSITE DIRECTION, pR LAUNCHING ATRtBBLE). 

Once the spaceship launcher is pointed directly above the place you 
wish to launch a tribble, begin the launching process by clicking the 
"LAUNCH" button on your control panel.   Your spaceship's on-board computer 
controls the execution of the launching procedure. 

Once the tribble has been launched, a rectangle will appear on the 
screen under the spaceships' launcher. This rectangle represents the 
planting area at which you positioned your launcher to drop the tribble. In 
other words, where you intended the tribute to be planted 

*****See Figure 2***** 

Why is the planting area represented by a rectangle instead of a single 
point? Because you are orbiting the planet from a distance of 500 miles, you 
are not able to drop tribbles at a precise location. Rather, tribbles land 
within 15 miles of the location at which you aim. Although the tribble may 
land somewhat east, west, north, or south of the location you specify, only 
east-west error is of interest with respect to your moisture hypothesis, so 
this is the error you see represented on the screen by the rectangular box. 
Moving this rectangle east or west on each trial specifies a planting 
location. When the tribble is released, you will know that it has landed 
somewhere within the east-west range represented by the rectangle, but you 
can be no more specific in your observations than this. 

In order to determine where the actual moisture line lies, it is 
important to determine if the tribble you planted lived or died at that 
planting location.   So, every time you launch a tribble, one telemetry device 
is sent down with it. The telemetry device is located wherever the tribble is 
planted. The device beams beck to your ship, almost immediately, whether 
the tribble lived or died.   Previous work with this device indicates that it is 
100!? accurate. A black tribble on your screen represents a dead tribble. A 
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white tribble on your screen represents o live tribble. 

After you have mode the command to lounch a tribble, you will be 
asked to try and predict, based on the data you have available to you, whether 
the tribble you're about to plant will live or die. Initially, you may feel you 
don't have enough information to warrant a reasonable prediction, but I'd like 
you to do your best. 

»♦♦»♦see Figure 3 ***** 

You indicate your prediction by moving the mouse and positioning the 
arrow on the response button desired. To make your prediction, you then 
click the button once. 

Because the tribble launching procedure is a multi-phase operation 
involving complex machinery controlled by an on-board computer, it 
sometimes malfunctions. All five phases of the launch cycle must be very 
precisely executed, and if any phase is even slightly off specifications, the 
launcher will over- or under-fire. Over- or under- firing means that the 
spaceship launcher positioned; the tribble to be fired at some area beyond (to 
the east of) or behind (to the west of) the area you intended the tribble to be 
launched to.  Therefore, if a malfunction occurs in the computer's launching 
system, you do not know where the tribble actually landed. »»Remember, the 
planting area depicted on the computer screen is only the area where the 
tribble was intended to be launched to, not necessarily the area where it 
was actually launched to. Therefore, if the computer launching operation 
malfunctioned, the tribble was launched to some unknown area. However, if 
the computer launching operation was successfully executed, then the tribble 
was launched to the planting area intended, which is depicted on the 
computer screen. 

Previous work involving these launching system malfunctions 
indicated that the rate of malfunction, on the average, occurs 50* of 
the time. Because this is only an average, your own rate of system 
malfunction may be slightly greater or less than that. 

How can you tell if there was a system malfunction? Well, there is a 
computer system probe check that you can conduct. Because so much energy 
and computer memory is involved in executing a probe check, you can only 
conduct the probe checks twice. The probe check will tell you if the 
computer launch operation was successful (and you know that the tribble 
was planted within the area represented on your screen) or was a 
malfunction (in which case you don't know where the tribble was actually 
planted). 

After you plant a tribble and find out whether it lived or died, you will 
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be asked whether you wont to conduct o launching system probe check. This 

question will appear in your control panel. 

»•♦**ceo Finure A***** See Figure A* 

Indicate whether you want to conduct a probe check by moving the cursor to 
the desired response button (YES or NO) and clicking it ONCE. 

Vou have resources available to plant a total of Ö tribbles. 

After you have planted a tribble, determined whether it has lived or 
died, and are preparing to launch your next tribble, a question will appear 
on the control panel of your computer screen which says "DO YOU WANT TO 
MOVE THE HYPOTHETICAL LINE?" 

***» »»♦♦•See Figure 5* 

What I'm interested m finding out fs whether or not the data "you've 
generated have Ted you to reject the location of the original critical 
moisture line in favor of a new location. I want you to relocate this line only 
when your data indicate that the line's present position is wrong and does 
not represent the actual critical moisture level. Again, you respond by 
positioning the arrow over the desired response button (yes or no) and click 

it once. 

If you decide not to move the line, the computer will give you your 

next tribble to plant. 

if you have decided to move the line, a line-moving control panel will 
appear, which works the same way you used the spaceship-moving control 

panel. 
♦♦»♦♦See Figure 6***** 

To move the line left or right use the arrow buttons, and use the STOP 
button to stop movement in any direction. 

When you've reached a point that represents your new working 
hypothesis about where the critical moisture line should be, click the 
"FINISH" button once. The line will be repositioned, and the computer will 

now give you your next tribble to plant. 
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This entire procedure will be followed for each tribble you plant until 
you've planted a total of 8 tribbles. 

If you have any questions, please ask for clarification from the 
experimenter before the experiment begins. 

To reduce any possible confusion, there is a box In the upper left 
corner of your screen which keeps account of task information for you. Refer 
back to one of the figures and note the box. This information is updated each 
time you are preparing to launch a new tribble. 
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** POSiTiÖN SHIP TO LAUNCH TRiBBLE ** 
TO LAUNCH: STOP AND THEN CLICK LAUNCH BUTTON 

(T^l     fSTÖPl     GESi    f LAUNCH I 
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TRIBBLE NUMBER      1 

* OF PROBES USED    0 

* OF PROBES LEFT    2 

DO YOU PREDICT THIS TRIBBLE WILL LIVE OR DIE? 

PRESS BUTTON FOR PREDICTION 
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DO YOU WANT TO MOVE THE HYPOTHESIS LINE? 

PRESS BUTTON FOR RESPONSE 
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TRIBBLE NUMBER       t 

* OF PROBES USED 0 
* OF PROBES LEFT 2 

** MOVE LINE TO DESIRED POSITION ** 
TO END: STOP AND THEN CLICK FINISH BUTTON 

<^1     fSTÖPl     GZEEJ^   I FINISH ] 



170 

Experiment 12 

Subjects in this experiment completed a task similar to experiment 11. 

However, in order to create both ME and SF error that would make sense in 

the feedback, subjects were instructed that each launch would plant a 

colony of 600 tribbles. Subjects received feedback about the number of 

tribbles that lived, presented as an approximate range of values (e.g., they 

might receive feedback that 320 - 380 tribbles lived). Instructions 

emphasized that the true number of surviving tribbles could be anywhere 

between the limits given, and that they should not assume it was in the 

middle of the range. Note that such limits differ from confidence intervals 

which locate a sample value in the middle of a reported range. Subjects 

were informed that at least 450 tribbles must survive in order for the 

colony to survive. 

METHOD 

Subjects.   The subjects for this experiment were 48 introductory 

psychology students, half of whom were enrolled in an Honors section. All 

subjects received course credit for participation. Subjects were 

arbitrarily assigned to experimental conditions. Each condition 

represented a specific level of ME error (high, 80 units, or low, 5 units) 

and a specific level of SF error (high, failure 30% of the time, or none, 

failure 0% of the time), yielding four experimental conditions: High 

ME-High SF; Low ME-High SF; High ME-No SF; Low ME-No SF. Because of the 

sounds generated by the computer involved with probe checks, subjects 

assigned to the High SF conditions were run separately from subjects 

participating in the No SF conditions. 

Procedure. The procedure used was similar to that described for 
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experiment 11.   Subjects initially launched a series of eight colonies of 

600 tribbles each, one colony at a time, and received feedback about the 

number of tribbles in the colony that survived after each launch. The 

actual number of tribbles that survived on any one launch was computed 

using a pre-programmed monotonically increasing function. As in 

experiment 11, after completion of eight launches, subjects in all 

conditions were informed that enough resources were still available for 

four more tribble colonies to be launched.  Thus, all subjects launched a 

total of 12 colonies. The instructions from the High ME- High SF condition 

are given on pages 172-179. 

In the conditions with high ME error (High ME-High SF and High ME-No 

SF), the feedback that subjects received about the number of tribbles in 

the colony that lived was computed by adding a randomly generated number 

between -80 and +80 to the actual number of tribbles that survived. 

Subjects in low ME error conditions received information computed by 

addition or subtraction of a random number between -5 and +5. Thus, for 

example, if 250 tribbles actually lived, this was presented to subjects as 

an interval either 5 units wide or 80 units wide, with the numerical value 

given as, say, 249-254 or 220-300, depending on condition. The endpoints 

were computed randomly, with the constraint that the true value was 

always contained within the resulting interval (Figure 4-3 shows a typical 

screen after the first trial). The bars shown on the screen in Figure 4-3 

were 20 pixels wide in both ME conditions. 

In order to manipulate SF error, subjects in the High ME-High SF and Low 

ME-High SF conditions were informed that the system used to indicate 

tribble survival was known to malfunction approximately 30% of the time. 
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You ore 8 scientist investigating an unexplored planet, Ethereus.   Right 
now, you are orbiting Ethereus in a spaceship. From your spaceship, you 
can conduct a variety of controlled experiments. Previous research has 
shown that certain life forms exist on the planet, but the conditions which 
support these life forms are very poorly understood. Your research project 
will involve the growth of a plant, the tribble, found in certain regions of 
Ethereus. The tribble was selected as the focus of this initial 
investigation because earlier work suggests that its survival depends only 
on the amount of moisture present in the soil. It is suspected that above a 
certain moisture content, tribbles grow. Below this moisture content, the 
tribbles die. 

******************* 

Your task is to determine this critical level by systematically 
p'anting colonies cf tribbles at various points on the planet's surface ana 
seeing whether or 10t they survive at these locations  Each of the points 
you select for planting will have a certain moisture level, which 
determines whether trie tribble lives or dies there. 
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The site of the investigation will be a 250,000 square-mile area 

encompassing a large portion of the planet's southern hemisphere. In 

Figure I (a picture of what the computer screen will show during the 

experiment), the area of investigation is depicted by the large box around 

the bottom 2/3 of the figure (labelled A in Figure I). 

i 

TRIBBLE NUMBER 
*«  POSITION SHIP TO LAUNCH  TRIBBLE   ** 

TO LAUNC H: STOP AND THEN CLICK LAUNCH BUTTON 

Fortunately, research has established that the distribution of moisture 
in the planet's soil is remarkably regular. The percentage of soil moisture 
on the planet's surface INCREASES uniformly from west (left side) to east 

(right side). Preliminary data indicate that tribbles can survive only when 
the percentage of moisture in the soil equals or exceeds a certain level. 
This level is indicated by the solid line drawn vertically across the 

planet's surface. (Labelled B in figure 1). Your job is to conduct a more 
thorough investigation of this tentative hypothesis that tribbles can 

survive only at moisture levels equal to or exceeding the level displayed 
by this line, by planting a colony oi 600 tribbles east or west of the line 

and observing whether they live ui die  Previous research has snovvn that 

if 450 (or more) of the tribbles survive, then the colonies will be 
self-sufficient. If less than 450 survive, the colony will die out. Thus, 

your task is to find where the line should be placed so that 450 or more 

tribbles survive 

b 
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Each lime you are ready to plant a tribble colony, you will see your 
spaceship appear in the orbit-area above the planet (Labelled C in figure 
I). At this time, you are ready to prepare to launch a tribble colony to the 
planet's surface. Position your spaceship launcher (the marker protruding 
from the bottom of the spaceship) exactly above the place you wish to 
plant tribbles  Positioning is conducted by the spaceship control panel in 
the upper right corner of your computer screen (Labelled D in figure 1)  To 
activate the spaceship, you move the cursor/arrow (by moving the mouse.' 
to the desired button, position the arrow within the button (as is shown on 
the figure), and then click the mouse once to activate the button. The 
arrow buttons designate the direction of spaceship movement. If you want 
to move the spaceship to the East, use the " >" button. If you want to 
move the spaceship to the West, use the "< " button. The "STOP" button 
stops the spaceship from moving in any direction. VOU MUST STOP THE 
SPACESHIP FROM MOVING IN ANY*DIRECTION BEFORE VOU CAN EXECUTE ANY 
OTHER CONTROL PANEL COMMAND (SUCH AS MOVING IN THE OPPOSITE 
DIRECTION OR LAUNCHING A TRIBBLE COLONY). 

******************** 

Once the spaceship launcher is pointed directly above the place you 
wish to launch tribbles, begin the launching process by clicking the 
"LAUNCH" button on your control panel. Your spaceship's on-board 
computer controls the execution of the launching procedure. 



Once the colony has been launched, a rectangle will appear on the 
screen under the spaceships' launcher. This rectangle represents the 
planting area at which you positioned your launcher to drop the tribbles. 
The rectangle shows where you intended the tribble to be planted  See 
Figure 2. 
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TRIBBLE NUMBER          1 
TRIBBLE LAUNCH IN PROGRESS 
«««»«it****************** 
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Why is the planting area represented by a rectangle instead of a single 
point? Because you are orbiting the planet from a distance of 500 miles, 
you are not able to drop the tribble colony at a precise location. Rather, 
tribbles land within 15 miles of the location at which you aim. Although 
the colony may land somewhat east, west, north, or south of the location 
you specify, only east-west error is of interest with respect to your 
moisture hypothesis, so this is the error you see represented on the screen 
by the rectangular box. Moving this rectangle east or west on each trial 
specifies a planting location. When the tribble colony is released, you will 
know that it has landed somewhere within the east-west range 
represented by the rectangle. 

In order to determine where the actual moisture line lies, it is 
important to determine if the tribbles you planted lived or died at that 
planting location. So, every time you launch a tribble colony, one 
telemetry device is sent down with it. The telemetry device is located 
wherever the colony is planted. The device beams back to your ship 
information about how many tribbles in the colony lived or died. Previous 
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After you have given the command to launch a tribble colony, you will 
be asked to predict, based on the data you have available to you. whether 
the tribbles you are about to plant will live or die. Initially, you may feel 
you don't have enough infoimation to warrant a reasonable prediction, but 
we'd like you to do your best   Remember that 450 or more of the 600 
tribbles in the colony must live it the colony is to survive. See Figure 3 

TRIBBLE NUMBER 
DO YOU PREDICT THAT OVER 450 TRIBBLES 
WILL SURVIVE? 

PRESS BUTTON FOR PREDICTION 

VES I  NO 

r r-z 

Indicate your prediction by moving the mouse and positioning the arrow 
on the response button desired. To make your prediction, you then click 
the button once. 

On any one launch, some e>;ect number of tribbles will survive, but you 
will not know this number   Instead you will get a range of possible 
numbers. At the right of the screen, the range of tribbles that lived is 
shown.   (See figure 4.)   You will know that the true number is somewhere 
within that range, but you wnn't know exactly where. Remember that at 
least 450 out of the 600 must survive tor the culonu. to be able to survive. 



Von have resources available to plant a total of 8 tribble colonies 

After you have planted a tribble, determined how many have lived or 
died., and are preparing to launch your next tribble, a question will appear- 
on the control panel of your computer screen which says "DO VOU V/AMT TO 
MOVE THE HYPOTHETICAL LINE?" (See Figure 4.) 
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TRIBBLE NUMBER 
DO YOU WANT TO MOVE THE HYPOTHESIS LINE? 

PRESS BUTTON FOR RESPONSE 
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We are interested in finding out whether or not the data you've 
generated have led you to reject the location of the original critical 
moisture line in favor of a new location. Relocate this line when you feel 
your data indicate that the line's present position is incorrect and does not 
represent the actual critical moisture level. Again, respond by positioning 
the arrow over the desired response button (YES or NO) and clicking it 
once. Move the line as often as you wish. You should move it every time 
you feel its present position is wrong  Don't weit until the end, or try to 
save time by not moving it when you think it should be moved. 
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Even if you decide not to move the line, the computer will give you the 

opportunity to plant your next tribble colony. If you have decided to move 

the line, a line-moving control panel will appear, which works the same 

way as the spaceship-moving control panel. See Figure 5. 

**   MOVE LINE TO DESIRED POSITION ** 
TO END: STOP AND THEN CLICK FINISH BUTTON 

To move the line left or right, use the arrow buttons. Use the STOP 
button to stop movement in any direction. 

When you've reached a point that represents your new working 
hypothesis about where the critical moisture line should be, click the 
"FINISH" button once. The line will be repositioned, and the computer will 

now give you your next tribble colony to plant. 

This entire procedure will be followed for each tribble colony you plant 

until you've planted a total of 8 colonies. 

To reduce possible confusion, there is a box in the upper left comer of 
your screen which keeps on account for you. Refer back to one of the 
figures end note the box. This information is updated each time you are 

preparing to launch a new tribble. 

If you have any questions, please ask for clarification from the 

experimenter before the experiment begins. 



Even if you decide not to move the line, the computer will give you the 
opportunity to plant your next tnoble colony   If you have decided to move 
the line, o line-moving control panel will appear, which works the same 
wau a? the speoeship-mo'-'inc; con*^-? 1 panel. See Figure 6. 
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Tc move the line left or right, use the arrow buttons. Use the STOP 
button to stop movement in any direction. 

When you've reached a point that represent; your new working 
hypothesis about where the critical moisture line should be, click the 
"FINISH" button once  The line will be repositioned, and the computer will 
npw give you your next tnbD>e colcnu to plant 

This entire procedure v-ll be followed for each tribble colony you plant 
until you've planted e total of 6 colonies. 

To reduce possible confusion., there is a box in the upper left comer of 
your screen which keeps an account for you   Refer beck to one of the 
figures and note the cox  This information is updated each time you ore 
preparing to launch a new t":bble 

if you heve any questions, please ask for clarification from the 
experimenter before the experiment beqms. 
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If such a malfunction occurred, then the feedback received on the screen 

would bear no relationship to the actual number of tribbles that may have 

lived. In order to assess such a malfunction, subjects in the high SF error 

conditions were able to conduct two probe checks. A probe check could tell 

a subject whether the feedback received was accurate (in which case the 

number of tribbles that lived was within the range displayed on the screen) 

or whether the feedback was inaccurate (the number of tribbles that 

survived could be anywhere between 0 and 600). A probe check could be 

conducted after any launch, but subjects were allowed only two probe 

checks in the first eight launches and one additional probe check in the 

last four launches. 

Results 

Because the design of the two experiments is similar, it will be 

convenient to describe the results together. Several different dependent 

variables will be discussed. The reader should bear in mind that 

Experiment 11 is a 3 X 3 factorial in which ME error and SF error were 

manipulated on the input side, whereas Experiment 12 is a 2 X 2 factorial 

in which the two kinds of error were in the feedback. 

Accuracy of Final Hypothesis. In each experiment, the distance between 

a subject's final moisture level hypothesis line and the actual moisture 

level line provides a measure of overall performance. For Experiment 11, 

this distance is plotted as a function of condition in Figure 4-4. Note that 

greater distance is equivalent to poorer performance. Figure 4-5 displays 

the equivalent mean distance for subjects in Experiment 12 as a function 

of experimental condition. Here also there are apparent effects due to SF 

error and to ME error. 
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Figure 4- 4   Mean absolute deviation of the subjects'final 

hypotheses from the true critical line. 
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Experiment 12 

u 
c 
o 

60 

50 

40 

30 

20 

10 

MC- 
Hifh (00) 
Uv<5> 

(Sf-0) 

L«v 

(Sf-3) 

System Failure Error 

Figure 4 - 5.   Mean absolute deviation or the subjects' final 

hypotheses from the true critical line. 
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Inspection of the data for both experiments revealed substantial 

heterogeneity of variance across experimental conditions and marked 

departure from normality as well. The data were accordingly analyzed 

using Kruskal-Wallis One-Way ANOVA by Ranks separately for each main 

effect. In Experiment 11, both main effects were significant; H (2) = 

18.70, p < .001 for SF error, and H (2) = 7.92, p < .02 for ME error. In 

Experiment 12, the effect of ME was significant; H (1) = 14.16, p < .001, but 

the effect of SF error was not; H (1) = 1.38, p < .30. 

Experiment 11 thus replicates the results of Kern's study insofar as ME 

error effects were found on the input side in both Kern's study and in ours, 

though we found a larger difference due to ME error on the input side than 

had Kern. Experiment 12, however, failed to replicate Kern's finding of a 

significant SF error effect on the feedback side, although it should be 

noted that a trend in the correct direction was found. 

Because experimental condition in both experiments affected the 

amount of variance in the distance measures, individual subjects' data 

were plotted. Figure 4-6 presents this data for Experiment 11 and Figure 

4-7 presents this data for Experiment 12. In both cases, distances plotted 

are absolute values, that is, whether the subject's final hypothesis line 

was to the right or to the left of the actual line was not taken into 

account. 

Inspection of the figures reveals a pattern common to both experiments. 

In both cases, it is clear that a small number of subjects are contributing 

to the mean differences. SF error at high levels appears to have greatly 

disrupted a small number of subjects in both experiments, while leaving a 

majority of subjects in both experiments relatively 
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Figure 4 - 6. indtvlduai subjects* accuracy scores (absolute deviations 

of their final hypothesis from the true critical line for experiment 11. 
conditions are: 
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Fi^re 4-6. individual subjects' accuracy scores (absolute deviations 

of their final hypothesis from the true critical line for experiment 12 
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unaffected. High levels of ME error produced a similar pattern, though 

fewer subjects were involved, and even those did not generally manifest 

the extremes of disruption caused by SF error. Figure 4 - 7 shows that 

Kern's data manifested very a similar pattern (recall that she used a 2 X 2 

design with two levels of ME error and two levels of SF error). 

Figures 4 - 5,4 - 6, and 4-7 also suggest that the effects of ME error 

are more consistent than those of SF error. Whereas SF error caused a 

small proportion of subjects to do very poorly, increasing levels of ME 

error appeared to cause a large number of subjects to perform slightly less 

well. 

Subjects' hypothesis testing strategies. Does error influence the way 

that subjects attacked the problem? In both experiments 11 and 12, the 

pattern of tribble plantings was a variable of key interest. To assess the 

subjects' patterns of plantings we chose to define a quantitative index 

which reflects our conception of a good strategy of attack in this 

particular task. 

A good strategy, given the instructions, would have been something like 

a systematic eastward progression of planting, perhaps with a successive 

halving of the distance between the last planting and the easternmost edge 

of the surface being surveyed. Figure 4-8 presents an example of a good 

strategy. An extremely poor strategy would have been to plant tribbles 

randomly (see Figure 4-9 for an example of a poor strategy). There are 

strategies that would have been even worse than random planting, e. g., 

progressive westward planting, but that would have been completely out of 

character with the nature of the task. Therefore for scaling purposes we 

defined random planting as essentially the worst plausible strategy, 
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Figure 4-7. individual subjects' accuracy scores (absolute deviations 

of their final hypothesis from the true critical line for Kern's data 
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and finding the line immediately and planting on it on all 12 trials as the 

best possible strategy. A numerical value that varies in the appropriate 

way can be obtained from the differences between successive plantings. 

Such a difference was used as the basis for a "goodness of strategy index", 

with higher numbers indicating poorer strategies. 

The first step in determining the goodness of strategy index was 

computing the average absolute value of the differences between 

successive plantings. This is conceptually a reasonable measure, but 

several subjects, after they had quickly and successfully narrowed down 

their search and located the line quite accurately, apparently used one or 

two observations as "checks", and went far back to the west to plant a 

tribble or a colony of tribbles. This behavior seemed eminently reasonable, 

but it drastically inflated the strategy score. Hence, we operationally 

defined "checks", and removed their influence from the index. A check was 

defined as an observation that met all three of the following criteria: 1) 

the planting was done after the subject's hypothesis about the critical line 

had stabilized, i. e., after the last move of <10 pixels, 2) the difference 

from the last planting was large, i. e., > 50 pixels, and 3) the subject 

predicted that the tribble or the colony of Tribbles 

would not survive. The strategy index was 20.6 for Figure 4-8 and 136.5 

for Figure 4-9. 

In Experiment 11, both ME and SF error had significant effects on the 

strategy index; F(2,54) = 3.75, p < .05; F(2,54) = 4.23, p < .05, respectively. 

The ME X SF interaction was not significant; F (4,54) = 2.12, .10 > p > .05. 

Figure 4-10 shows that the effect is essentially due to the High ME-High 

SF condition, with a pattern index almost twice as high in that condition 
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as in any other, and with relatively similar means in the other eight 

conditions. 
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In Experiment 12, there was no effect of ME error on the pattern index 

(F<1), nor was there evidence of an interaction between ME and SF (F<1). 

There was, however, a significant effect of SF error; F(1,44)= 8.79, p<.01, 

with poorer strategies in the conditions with SF error present. 

Hypothesis revisions. Kern found that subjects were much less likely to 

move their hypothesized moisture line in the presence of SF error than in 

its absence (ME error had no effect). The effect she found was quite large; 

subjects given SF error in the feedback revised their hypothesis line less 

than half as often as subjects given no SF error. We found no comparable 

effects; in neither experiment was there a significant difference in 

number of hypothesis revisions as a function of SF error. In fact, the only 

significant result in our data was that subjects given high ME in 
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experiment 12 were more likely to revise their hypotheses; F (1,44) = 

4.83, p < .03. The effect was slight, however, the mean number of 

revisions being 6.4 for low ME and 7.8 for high ME, representing less than 

10% of the total variance in the number of hypothesis revisions. 

Probe checks. One of the dependent variables that we expected to be 

sensitive to error effects was the number of times subjects checked to 

see if the telemetry had malfunctioned. Kern found that subjects were 

more likely to query a probe which disconfirmed their expectations than a 

probe which confirmed their expectations, but her effects were only 

marginally significant. We did not replicate her findings: in neither 

experiment was there a significant effect of error on the frequency of 

probe checks. 

Replications. In the analysis of the 2-4-6 task we were concerned with 

whether SF error led subjects to attempt to assess the system 

unreliability b y systematically replicating trials (triples). A similar 

analysis could not be easily accomplished in the present study, because it 

was not clear whether a subject was trying to launch a tribble from the 

same position, since they were visually locating the final ship position. 

Also, since the number of observations was strictly limited in the 

artificial universe task, a replication was likely much more costly to the 

subjects. Nevertheless, inspection of the data suggests strongly that 

there was very little attempt by subjects in any of the groups to use their 

tribble resources to check system reliability. 

The relation between strategy and accuracy. There are a large number 

of possible relations among dependent variables, but the most important 

possibility is between the strategy and the accuracy scores. In experiment 
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11, the overall correlation between these variables across groups was .63. 

This is a remarkably high correlation, given the many influences on both of 

the underlying constructs, and given the relative crudity of the indices of 

those constructs. The corresponding value for experiment 12 was positive, 

but lower, .26. In experiment 12, the correlations between strategy and 

accuracy were higher within the four separate groups than the overall .26, 

in two groups considerably so. These values cannot be legitimately tested 

for statistical significance, for while the Pearson r can be used as a 

statistic descriptive of the linear component of a relationship under 

almost any circumstances, the available statistical tests require bivariate 

normalcy, a condition not met in our data. 

Discussion 

Though not exact replications of Kern's study, experiments 11 and 12 are 

suggestive in their implications for the generalizability of her results. We 

found, as did Kern, that SF error can have major implications for human 

performance in complex systems. While not a major focus of her study, we 

found, as she did, that SF error can lead to major performance deficits in a 

small number of subjects while affecting most subjects very little. ME error 

was more consistent in this regard: in both Kern's study and ours, presence of 

ME error affected most subjects to a small extent. It seems clear that a full 

understanding of the effects of SF error will need to pay very close attention 

to the specifics of individual differences in performance. By contrast, a full 

understanding of ME error effects may be possible using the nomothetic 

approach common to most earlier studies of the effect of error on 

performance. Overall accuracy aside, Kern's study found large and consistent 

changes in the strategies used by subjects in the presence of SF error. We 
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found less strong effects. It is not clear why this difference exists, but it is 

plausible to suggest that the need to unconfound locus of error and type of 

error led to a more complex task environment for our subjects. This seems 

especially likely in experiment 12; in general, we were not convinced that all 

of our subjects were fully cognizant of the nature of the feedback 

information, in spite of the extensive instructions. For this reason, we are 

not as confident about the outcome of experiment 12 as we are of the 

outcome of experiment 11. 

A potentially important finding was the relation between the error 

manipulations, the strategy indices and the accuracy scores. While much 

different experimental designs would be needed to tease out the nature of 

the effects, note that in both experiments 11 and 12 there were significant 

effects of error on strategy, and in both there were positive correlations 

between strategy and accuracy. The people who did just especially poorly on 

the task tended to be those with high levels of SF error, and with high 

strategy (i. e., poor) strategy indices. Unfortunately, this task, unlike the 

MCPL task, allows no easy way to separate the purely informational effects 

of information degradation from effects that go beyond the information lost. 

In general, the two studies do suggest that the differential effects of 

locus and type of error found in the first 10 experiments are generalizable 

to more complex environments. In spite of the complexity of the outcome, it 

seems true that SF error, in particular, has unique implications for 

performance. For this reason, we believe that experiments 11 and 12 

constitute strong evidence in favor of close attention to this variable on the 

part of designers of complex real-world interfaces between people and 

fallible sources of information. 



Part5 

DISCUSSION AND IMPLICATIONS 
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The primary contribution of the research described in this report is 

the elucidation of the concept of system failure error, and the start of a 

serious, systematic attempt to determine the conditions under which it 

occurs, and the effects that it may have. The idea was described vividly 

by Seymour Hersh, in his controversial book on the downing of the KAL 

007: 

The fact is that many pilots simply do not rely on ground - 

mapping radar because ... they don't believe it will tell them 

anything they need to know, and when it does depict conflicting 

data, they frequently choose to believe that it is malfunctioning. 

Such error is associated with man-made artifacts, with technology. It 

is associated with computers, perhaps especially vividly in those 

occasional newspaper articles that report some hapless soul who has just 

gotten a telephone bill for several billion dollars. The response described 

by Hersh amounted to ignoring the output of a man-made system that 

operators had too often seen fail. When a radar goes awry, it may not just 

involve a ±1% or ±2% error, it may involve a system output that is 

fundamentally unrelated to the process that the system is supposed to be 

representing. The effects of this form of error on the person who must 

deal with the system are virtually unstudied. 

In this report we contrast SF error with normally distributed, or 

"measurement error." It is the sort of error that we associate with 

measurements made, for example, with a yardstick, or a tape measure. If 

we were to ask a number of people to measure one person's height to the 



198 

nearest tenth of an inch with a tape measure, we would get a distribution 

of measurements which would be reasonably normal in shape. According to 

classical measurement theory, or classical psychometric theory, the mean 

of an infinite number of such measurements would be that person's true 

height, and the variation in the measurements would be an index of the 

reliability of the measuring process. 

SF error is quite different. It is the form of error that characterizes 

many technological systems. It is the form of error that Hersh referred to 

when he characterized the system as "malfunctioning."  With respect to 

that aspect of the man-machine interface by which the human gains 

information about the world from various system indicators, little hard 

knowledge exists about the effect of system errors on the user, even in 

redundant systems where such error would mean conflicting output. So far 

as we know, little is known beyond the sort of anecdotal evidence cited by 

Hersh, part of which is quoted above. 

The second major aspect of error that underlies the research effort 

under this contract is the "location" of the error in the sequence of 

operations between the human and the information system.   We define the 

information on which some inference or prediction is based as input (note 

that we are referring to input from the system to the operator). 

Information about the correctness of the inference or prediction is defined 

as feedback (from the system to the person). Hence, two loci of error are 

possible: we may have input error or feedback error. The 2x2 error 

taxonomy just described is by no means exhaustive, but it suggests at least 

four sorts of error that may have important consequences for behavior. 

Generalizability from the laboratory to the world. This is often a major 
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concern of experimental psychologists. With respect to the present 

research, however, we believe that any effects demonstrated in the 

laboratory are likely to be exacerbated in real operational contexts. This is 

because in the experimental situation all subjects had to do was to make an 

inference or prediction about the system, based on evidence only from the 

system, and had as much time as they desired to do so. In operational 

contexts, the person will have to make highly consequential decisions 

based on the inferences or predictions, will be operating under time 

pressure, and may have a variety of sources of conflicting information. All 

of these will, we believe, exacerbate the effects of error, especially SF 

error. 

What are those effects? 

SUMMARY OF FINDINGS 

1) Performance is not disrupted by ME error to a degree greater than 

performance would be expected to be degraded by the loss of information 

entailed by the introduction of error. This does not mean that ME error has 

no effects; it means that subjects basically ignore such error and very 

often that is the optimal thing to do. There are dependent variables that 

show ME effects. For instance, Markowitz's unpublished research showed 

that subjects do not show regressiveness in their predictions appropriate 

to the unreliability inherent in the concept of ME error, and York, Doherty & 

Kamouri (1987) showed that subjects believed that ME error was quite 

disruptive. 

2) Performance can be badly disrupted by SF error, to a greater degree 
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than would be expected by the loss of information entailed by the 

introduction of error. This was shown unequivocally in the MCPL paradigm, 

which was the only paradigm used that allowed us to equate statistically 

the error types and that had a measure of optimal performance. In the MCPL 

work we could show that the SF effects were in fact greater than the 

effects of the information degradation entailed in the introduction of error. 

3) The effects of SF error are highly variable: some people are much 

more seriously affected than others. The magnitudes of the effects of SF 

error on the individual differences were a surprise. 

4) Subjects' beliefs about the effects that error has on them may differ 

from the actual error effects. This finding warrants careful investigation. 

The operator's beliefs about the systems may turn out to be the key as to 

whether the system is used as designed, and to the huge performance 

deficits shown in some subjects. Some evidence not consistent with this 

is the failure to find effects of informing the subjects of the presence of 

error in Wason's rule discovery task (experiment 8). 

5) Many subjects display agitation when faced with SF error. This was 

an anecdotal observation made by the experimenters as subjects tried to 

solve Wason's rule discovery task and the artificial universe task. It is a 

phenomenon we noticed many years ago in perceptual tasks, as well 

(Doherty & Keeley, 1972; Keeley & Doherty, 1971a,b). People like to be 

right, even when absolutely no payoffs are involved. They get upset when 

they cannot trust their senses to tell them the truth about the world, as in 

the perceptual tasks. They also get upset when they cannot trust 

technology to tell them the truth about the world, as in the tasks described 

here. This may also be related to the speculation on p. 68 that the big jump 
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in the "psychological cost" of being wrong occurs at the difference between 

a direct hit and a small error, whereas the almost universally used loss 

functions are power functions of the magnitude of the subject's error. 

6) Subjects tend strongly to attempt confirmatory tests of the 

hypothesis under test, rather than to test alternatives or to attempt 

disconfirmatory tests. This is not a motivationally mediated phenomenon. 

The bias to confirm is, of course, a well-known phenomenon (Mynatt, 

Doherty & Tweney, 1977;1978; Snyder & Swann, 1978), replicated in the 

course of this research. 

7) The availability of highly diagnostic information can attenuate the 

otherwise robust bias to confirm. This phenomenon has also been 

previously reported, but it is not well-established (Skov & Sherman, 1986; 

Slowiaczek & Sherman, 1987; Trope & Bassok, 1982;1983). Our reading of 

this literature is that there are both effects which are confirmatory in 

nature, but that diagnosticity - the degree to which the data ought to 

influence one's belief in some hypothesis relative to the alternative(s) - 

also has an influence that may or may not override the tendency to confirm. 

What we now believe to be a source of the tendency to confirm will be 

discussed below. 

8) Subjects like big numbers. This is a rather bizarre bias that occurred 

in the pseudodiagnosticity research outlined in Part 3. There was a marked 

tendency for subjects to select large percentages, regardless of the 

diagnostic impact of those values. This is a wholly dysfunctional cognitive 

bias. 

9) Subjects did not check the reliability of the data very often, While 

there were, in the 2-4-6 research, significantly more repeated 
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observations in the SF error conditions than in the no error conditions, our 

judgment is that the subjects made far fewer such test-retest reliability 

checks than they should have. This was also true in the artificial universe 

experiments, but in those experiments the subjects were limited in the 

number of tribbles they could plant. There was no limitation in the 2-4-6 

task on the number of triples to be tested before rule announcement, and 

the subjects could, with minimum effort, retest triples to assess not only 

the possibility of error on any given trial, but also the seriousness of the 

problem created by the presence of the error. 

METHODOLOGICAL RECOMMENDATIONS 

Future investigations should ideally include protocol analysis as well 

as a variety of behavioral indicators. Hindsight leaves us wishing that we 

had selected a small number of subjects in many of the studies, and taken 

"think-aloud protocols" on them. Such protocols would have provided, at 

the least, hypotheses about the cognitive processes employed by subjects 

in dealing with these tasks. Perhaps protocol data would have provided 

strong converging operations for some of our conclusions regarding the 

effects of SF error. 

The major new findings of the research conducted under this contract 

deal with the effects of SF error. In one study (Experiment 11), we found 

drastic effects, but with relatively few subjects. How would we proceed 

in trying to make this knowledge useful? One possibility would be to adopt 

an individual differences approach, and to look for personality correlates of 

susceptibility to SF error. We do not think that this would be a fruitful 
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way to go, though there are those who would argue for using the concept of 

"cognitive styles". A second possibility would be to try to discover the 

environmental conditions which differed between the subjects who did 

badly and those who did well. In the artificial universe studies what 

happens to each subject on any given trial differs as a function of chance 

factors, and as a result of the subject's behavior on previous trials. We do 

not have sufficient data from each subject in Experiment 11 to home in on 

one explanation and also rule out others. 

We have been poring over error data and thinking about the effects of 

error in cognitive tasks for many years, and we think that the most 

productive next step would be to attempt to assess operators' beliefs about 

specific interfaces after a controlled experience with those interfaces, 

experiences that are analogous to our ME and SF manipulations, especially 

the latter. If Hersh's informants were correct, and if our subjects and 

tasks are representative, then SF error may have disastrous 

consequences-and operators certainly ought to be able to report when they 

lose faith in some system. 

SPECULATION ABOUT THE COGNITIVE SOURCES OF ERROR EFFECTS 

We believe that the effects of error are due in part to a fundamental 

limitation on how many things a human being can think about at one time. 

The assertion that we can think of but one thing at a time is, we think, 

phenomenologically obvious and consistent with the data, but one that we 

do not see explicitly in the psychological literature. How many 

simultaneous objects of thought, of "internal attention", can there be? The 
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answer seems self-evident, one. 

"Thing" may refer to an object, or to an attribute, or to a relation 

between objects or attributes. One can think of the relation between a 

symptom and a disease, but not, simultaneously, of the relation between a 

symptom and two diseases: or at least not without unusual effort. 

"Simultaneous" must also be carefully defined. Clearly, people can switch 

internal attention more or less rapidly from one focus of that attention to 

another, although we believe that this happens far less rapidly than is the 

case with external attention. We do not claim that it is impossible to 

think about two things, only that it is impossible to think about two things 

at the same time. If this is true, it follows immediately that an attempt 

to, say, think about the relation of a symptom to two diseases, must 

involve the switching of internal attention. We hypothesize that such 

switching is difficult in proportion to the complexity of the relations 

between the alternatives and the information, and that all other things 

being equal, people avoid difficult things. It is easier to think about only 

one alternative and ignore the other one. The reader may have had the 

experience of trying to decide which of two scientific theories a set of 

data best fits. It's hard to do. Almost invariably cognitive "aids", such as 

written lists or notes, are necessary. It is simply too difficult to keep all 

of the relevant relationships in the head. 

The above paragraphs borrow heavily from Doherty & Mynatt (1986), a 

paper that dealt with the pseudodiagnosticity phenomenon. It is an attempt 

to explain why people select the inappropriate probability values in that 

task. When we first began thinking about this explanation, Tweney 

recognized its relevance to the 2-4-6 task, the optimal approach to which 
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requires subjects to entertain and test multiple hypotheses, or to entertain 

both the hypothesis that "numbers increasing by 2" is the correct 

hypothesis, and also that the same hypothesis is the incorrect hypothesis. 

Multiple hypothesis testing and falsification are cognitive activities that 

some people claim they engage in routinely, but which we very rarely see in 

the laboratory even when we instruct people to engage in them (Mynatt, 

Doherty & Tweney, 1977). 

What is the relevance to error effects? We think that it is very hard for 

subjects to entertain simultaneously hypotheses about the state of the 

world implicated by the data and hypotheses about the data, or about the 

data source. Once our working memory is taken up by hypotheses about the 

data or the data source, we can no longer concentrate on drawing an 

inference about the present state of some aspect of the world, or 

predicting some future aspect of some state of the world.   But it is the 

state of the world that is of interest, not the data. Hence, if something has 

to be subordinated, it will be the data - we will stop attending to the 

source of the data that competes for attention, and rely on other sources 

that may be less valid indicators, but that we can rely on to give us 

reliable information. 
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